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Edge-element methods have proved very effective for 3-D electromagnetic com-
putations and are widely used on unstructured meshes. However, the accuracy of
standard edge elements can be criticised because of their low order. This paper anal-
yses discrete dispersion relations together with numerical propagation accuracy to
determine the effect of tetrahedral shape on the phase accuracy of standard 3-D edge-
element approximations in comparison to other methods. Scattering computations
for the sphere obtained with edge elements are compared with results obtained with
vertex elements, and a new formulation of the far-field integral approximations for
use with edge elements is shown to give improved cross sections over conventional
formulations. © 2001 Academic Press
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1. INTRODUCTION

Accurate electromagnetic wave propagation computations are required in areas suc
radar cross-section calculations, antenna design, electromagnetic compatibility modell
and microwave tomography. Edge-element methods are one of the methods in active u
allthese applications; however, despite their popularity, the inherent accuracy of the stan
edge elementis not easily analysed, lying somewhere between firstand second order. H
order edge elements provide better convergence rates [12] but are relatively exper
when used on unstructured meshes. Conforming elements encounter severe difficulties
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singularities at rentrant corners in 3D and are currently not an option for such doma
although recent work [1, 2] on singularity subtraction has shown some success in 2D.

Maxwell's equations in free space are a first-order hyperbolic system, but can be re
mulated in a wide variety of ways, e.g., as second-order vector wave equations in eithe
the two electromagnetic fields, or as complex vector Helmholtz problems in the freque
domain. This paper uses time-domain implementations for the numerical testing (all
ing efficient broadband comparisons to be made); however, the results are also releva
the frequency domain. We analyse edge-element approximation of the first-order sys
partly for ease of comparison with finite-difference time-domain (FDTD) and the conforr
ing element method. However, it should be noted that this formulation is equivalent to
edge-element approximation of the second-order electric field wave equation.

The edge-element method has been proposed by numerous authors. The interpol
properties of these elements were analysed bgeltc [38]. Their use in low-frequency
eddy current problems is reviewed in [9], and for time-harmonic scattering see [14].
restrict our study to the lowest order elements which are related to Whitney forms
and have been discovered independently by Cendes and co-workers [6]. The use of 1
elements in the time domain has been examined by Lee and co-workers (see [19, 20]
references therein). The same elements have also been investigated in the context of
calculations in [23, 24] where suitable absorbing boundary conditions are discussed in s
detail (see also [11]). For a full history of the elements, as well as many useful practi
details, see Jin [17]. We have not considered related approaches, such as the the co-vc
approach of [16, 25] since they are restricted to Delaunay—\Voronoi meshes.

In this paper we are specifically concerned with the accuracy of the edge-element me
for electromagnetic wave propagation, when used on unstructured meshes. We als
scribe how to obtain improved estimates of far-field quantities when the method is u
for scattering calculations. Reference points for this assessment are provided by the
finite-difference scheme and conforming linear elements [33], and the main tools used
discrete dispersion relations and numerical comparisons of results for wave propaga
Scattering from a sphere was used to provide more realistic, albeit qualitative, tests of
propagation for edge elements and for conforming linear elements (see also [31]).

The scattering coefficent depends on far-field quantities which are themselves sur
integrals of computed near fields; the low-order nature of edge elements makes these
grals awkward to approximate. Conventional finite-element approximations of fluid flow
heat transfer have a similar difficulty in retaining their accuracy when approximating fli
integrals. The approach taken [3-5, 46] is to reformulate the integral in a variational for
we show that this approach can be applied in 3D to the far-field integrals (see [32] for a:
formulation), resulting in a novel formulation which significantly improves the accuracy
broadband scattering computations using edge elements.

1.1. Finite-Element Approximation of Maxwell’'s Equations

Maxwell's equations for the electric field and the magnetic fielé on an isotropic
nonconducting domaif are

€E(—V xH =0, (1.1a)
pH{+V x E = 0. (1.1b)
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These equations can be written in a weak form, for any sufficiently smooth functio
P (X, y,2), ¥(X,y,2) € (LX(R))? as

(e%,w) —(VxH,y) =0, (1.2a)
(sz:, ¢> +(VxE, ¢)=0, (1.2b)

where(y, ¢) = [, - ¢ dV.
A finite-element approximation to the electromagnetic fields can be written in the forn

Ne Ny

En(x. ) = > Ei)yni(x) and Ha(x.t)=>) Hjhgn;x) ¥xeQ"  (1.3)

i—1 =1

whereE; (t) andH; (t) are time-dependent degrees of freeddp,andNy are the number
of degrees of freedom for each field, agig; andgy ; are finite element basis functions.
In the formulations described below, the domain of inteegtas been covered by an
unstructured tetrahedral me€h consisting ofi\; tetrahedra of maximum diametierwith
Ne edgesN; faces, andN, vertices.

1.1.1. Edge elementsThis paper is principally concerned with the first-order Nedele«
elements where, in (1.3k; are the tangential electric field components on each edge, a
H; are face normal components of the magnetic flux. The numbers of degrees of freec
for the two fields are theNg = Ne andNg = N;. The electric field basis function for the
ith edge, of lengtls and connecting verticgsn, n}, is given by

Vhi (X) = S (@mVen — enVom), (1.4)

whereg is the conventional piecewise-linear basis function, taking a value 1 at vartex
and 0 at any other vertex. It is sometimes convenient to combine the edge length with
degrees of freedom.

The magnetic flux basis function for ttj¢h face, connecting verticgs, m, n}, and of
areaA, is

on,j X) = 2A{[01 (Vom X Ven) + om(Ven x Vo) + on(Ver x Vem)]. (1.5)

The numbers of degrees of freedom for these elements are consegNentyN, and
Ng = N;. Since they do not have a well-defined curl, (1.2a) is first integrated by parts
that the semidiscrete edge-element approximations to (1.2) are

oE

(Ea—th’ 1/fh> — (Hn, V x ¥m) = —(Hp x v, ¥n), (1.6a)
oH

(Mathv ¢h> + (V X Eh1 ¢h) - 07 (16b)

where(¢, V) = [, ¢ - ¥ dSandv is the outward facing normal 0i2,. The boundary
term in (1.6a) either will be zero or will be used to weakly impose an absorbing bound:
condition (see Section 4). The electric-field approximation is that of the standard first-or
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edge-element method. It can be seen from (1.4), (1.5), and (1.6b) that the time derive
(time difference in the fully discrete case) of the magnetic field degrees of freedom is exa
the discrete curl of the electric field. It is straightforward to show that this formulatic
is equivalent to an edge-element method used directly on the second-order electric-
problem.

1.1.2. Vertex elementsin the case of linear vertex elements the electric and magnet
fields are treated identically, and the degrees of freedom for each field are the Carte
components at each vertex of the mesh. The basis functions for each field are ident
there is one for each field component at a given vertex so that thosekdh thertex can be
denoted by

Yhak+a = Phsk+a = k(X)€&, a =012, x.7)

whereeg, are the Cartesian unit vectors. Clearly in this chlge= Ng = 3N,. The semi-
discrete vertex-element equations are then

oE
oH
<'u8th’ ¢h) + (V x En, ¢n) =0, (1.8b)

and are well defined for these elements, although integration by parts can be used to ¢
weak imposition of boundary conditions (see Section 4).

We note here that vertex elements require storage of fewer degrees of freedom
tetrahedral mesh. However, they are currently limited to problems with no singularit
(e.g., from re-entrant corners), and although they can be applied to heterogeneous prok
they are not as well suited to these as are edge elements. On the other hand edge ele
give a partially discontinuous representation even when the solution is known to be smc
(e.g., for wave propagation in free space).

2. DISPERSION RELATIONS ON TETRAHEDRAL MESHES

2.1. Regular Tetrahedral Meshes

An important method of characterising the properties of any numerical approximatior
the wave equation is to derive its discrete dispersion properties through a Fourier anal
In this section we do this for semi-discrete schemes (1.6) and (1.8) on regular tetrahe
meshes and make comparisons (where possible) with the Yee finite-difference scheme
benchmark.

A translation-invariant grid oR? is required for the analysis; consider a reference “uni
cell” € of unit volume. This unit cell is a polyhedron meshed by tetrahedra, and we supp
that there are three independent vectary,, andvs such that if is translated by integer
multiples of the three vectors, then we generate a finite-element mésh Bhis mesh is
then scaled by an overall scale fadiqithis is equivalent to meshirg® using translates of
the scaled unit cef2, = h2).

The continuous problem (1.1) has a plane-wave solution proportional {o(kxpx —
wt)), where for convenience we have set light speg@a)*? to unity, provided either of
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FIG.1. Twotypes of unitcells used inthe dispersion analysis. (a) Cubic unit cell subdivided into six tetrahed
(b) Sommerville unit cell divided into six congruent tetrahedra.

the dispersion relations = 0 orw = +|K| is satisfied. Discrete plane-wave solutions of
(1.6) and (1.8) are then sought, of the form

En(x,t) = En()exp(—iwnt) and Hn(X, t) = Hp(X)eXp(—i wnt),
whereE}, andH;, have the translation property that for evarye R3

En(X + lhvy + mhv, 4 nhvg) = En(X) explik - (Ihvy + mhv, + nhvg))
I:|h(x + lhvy + mhv, + nhvg) = }:|h(x) exp(ik - (Ihvy + mhvy + nhvs))

for integersl, m, andn. For these functions to satisfy the finite-element equations, tf
vectork and the frequencyy, have to be related by a dispersion relatign = wh (K, h).
Since the shape of the tetrahedra influences the accuracy of this relation, we shall con:
two different meshes, one based on right tetrahedra and another based on Somme
tetrahedra, as shown in Fig. 1. The unit cell in the Sommerville case is a polyhed
consisting of six Sommerville tetrahedra [40]; all the tetrahedra are congruent, and the f
of each tetrahedron is an isosceles triangle. The unit cell vertices are

a; =[0,0,0]" as =[0,0, AZ]"

a, = [2AX,0, AZ]T ag = [2AX, 0,4AZ]7
az = [3AX, Ay, 3AZ]T a; = [3AX, Ay, 5AZ]"T
as = [AX, Ay, 2AZ]T  ag =[AX, Ay, 6AZ]T,

where Ax = 1256./3, Ay = 1256 andAz = 1v/2¢/3. The scaling of the vertices was
chosen to give the unit cell a unit volume so that the mesh densities of the Sommervi
tetrahedral mesh and the right-tetrahedral mesh are the same.
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2.2. Dispersion Accuracy for the Yee Scheme

The standard Yee finite-difference scheme for the Maxwell system [48] can be usec
a benchmark for a tetrahedral mesh based on cubes. This scheme must be applied
rectilinear grid, on which it is known to be second-order accurate [34], and to have 1
semi-discrete dispersion relation

(reh)? = 2\/5in(E;/2)% + SiN(E2/2)? + Sin(Es/2)2, 2.1)

where¢ = kh andh s the length of the edges of the cubes in the spatial grid. The fully di
crete scheme uses staggered leapfrog time stepping and has the discrete dispersion re

2 . (A
wfegh = sin 1(2wge%>,
where the time step iat and the Courant number ls= At/h. It is apparent that the
stability condition for this method i& < 1/+/3 and, by analyzing the Taylor series for
of® in handAt, one can show that the optimal choice.is= 1/+/3.

2.3. Dispersion Accuracy on Cubic and Sommerville Meshes

The general approach taken is a straightforward, albeit tedious, extension of that desci
in two dimensions in [29] and only the overall results of the analysis are stated here.

e For the semi-discrete edge scheme (1.6), assembling the equations for each degr
freedom for the unit cell and applying the translation property (2.1) leads to seven n
trivial discrete dispersion relations. Only one of these is the “physical” dispersion relatic
converging taw? = |k|? ash or equivalently|¢| is decreased. The other values &g are
termed “parasitic” and are proportionaltio?, thus having an infinite phase velocity in the
limit as h tends to zero. They are similar to Bloch modes and do not seem to cause
problems in practice, but must be taken into account when the stability of the fully discr
scheme is analysed on an infinite domain.

e For the case of the semi-discrete vertex scheme (1.8), there are only three nontr
discrete dispersion relations, as in the exact case, and hence no parasitic modes. It c
shown (using MAPLE) that on some grids (but not those used here) the node-based sct
(1.8) has the dispersion relationg = 0 orwp, = £|k| + O(h%).

Itis not possible in general to produce analytic dispersion relations for these discrete
of equations; however, they can be computed and plotted. We display the fractional e
in the phase velocity, defined as

2.2)

h
&) = (‘”“(E) - 1),

1§

where the exact phase velocity is unity.

Figures 2a to 2e show a comparison of the phase-velocity error in the Yee, edge,
vertex schemes as a function of the number of elements per wavelength along sele
directions. The rate of convergence of the discrete dispersion relations for the Yee and «
schemes is roughl®((kh)?). The vertex scheme, shown in Figs. 2c and 2e, has a visib
different curvature, and both curves are consistent witagkh)*) convergence rate. The
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FIG. 2. Fractional phase-velocity error V§ | = |kh| for the cuboid and Sommerville meshes. The phase
errors have been plotted along each of the three coordinate axes and along a “central” direchoa 0.5. The
propagation angleg and¢ are defined by; = |k| cos@)cosg), k. = |k| sin@), ks = | k| cos@) sin(p). Note
that 10 elements per wavelength correspondg te=27/10~ 0.6. (a) Yee scheme with cubic mesh; (b) edge
elements with cubic mesh; (c) vertex scheme with cubic mesh; (d) edge elements with sommerville mesh
vertex elements with sommerville mesh.

vertex results on the Sommerville meshes are better than those on the cuboid mesh by a
a factor of 4. Since the error is always negative, it may be possible to compensate for |
some degree by choosing a suitable time-stepping method. In the case of the edge-ele
scheme, shown in Figs. 2b and 2d, we see that the phase-velocity error has also been g
improved by the Sommerville mesh. The overall error for a given valu&lgfhas been
decreased by roughly a factor of 4. Nevertheless, the sign of the error still depends on
direction of propagation and is stid((kh)?). This change in sign makes it impossible to
compensate for this error by using a suitable time stepping scheme (as is done in the
of the Yee scheme).
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Figure 3 shows a comparison of contour maps of the phase-velocity errors for the tt
schemes, whem (&) has been plotted as a function of propagation angle. The maps ident
the anisotropic character of the edge scheme, where the sign of the phase velocity
can be positive or negative depending on the direction of propagation. Inspection of
maximum phase-velocity errors in Fig. 3 shows that the vertex scheme is easily the n
accurate on a given grid.

Figure 4 shows the directional characteristics of the phase-velocity error by plotting
isosurfacese,| = 1 x 1073 as a function okh e [—1, 1]3. The phase error for the edge
scheme is highly anisotropic compared to that for the vertex scheme, and the phase
for the vertex scheme is much more isotropic on the Sommerville grid than on the cub
grid.

Although the phase errors for these three schemes seem reasonably comparable, it s
be noted that on a given cuboid mesh there are over twice as many unknowns in the ¢
scheme as there are in the Yee or node-based schemes. This can be seen from a
calculation of the number of edges and vertices. Od & N x N grid of cubes, each
decomposed into six tetrahedra, there axg 3- N2 unknowns for the Yee or node-based
scheme, while there ardN? + O(N?) degrees of freedom for the edge scheme. This meat
that for a given density of degrees of freedom (rather than tetrahedra), the edge scheme
have a much poorer phase error than the Yee scheme.

3. NUMERICAL WAVE PROPAGATION ON TETRAHEDRAL MESHES

The dispersion analysis just described is limited to regular meshes; since practical
amples (e.g., the scattering example in the next section) are always non-uniform, we |
carried out a number of numerical comparisons to obtain greater insight on the rela
merits of the methods, using both regular meshes and partially randomized meshes. T
numerical comparisons are solely concerned with the propagation accuracy; their cum
tive accuracy on scattering calculations will be described in Section 4. Before presen
the numerical results the time discretisation of the semidiscrete schemes (1.6) and {
needs some discussion.

3.1. Time Discretization

3.1.1. Edge elementsThe spatially staggered nature of the degrees of freedom has |
to the use of a staggered-leapfrog time discretisation with this method; applying this to
semi-discrete equations (1.6) leads to

(€(BR* = BR). wn) — At(HR 2,V x yn) = —(H* ™2 v, yn),  (3.1a)
((HRTY? —HP~Y2) ) + AL(V x ER, ¢n) = 0. (3.1b)
The resulting algebraic system can be solved by a diagonally preconditioned conju

gradient method (see, e.g., [24]). See the Appendix for details on the convergence rate
CG and the choice of stable time step for both the edge and vertex methods.

3.1.2. The time-discrete vertex equation¥he obvious choice of time discretisation for
the vertex method is the Taylor—Galerkin method of Donea [15]; this is based on a Tay
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FIG. 3. Directional maps of the fractional phase-velocity errors at 10 elements per waveldingtlaxes are
the propagation anglgsand¢ so that, e.g.¢ = ¢ = 0 corresponds to waves travelling along theaxis. The
hatched areas show where the error is positive; maxima (H) and minima (L) are shown where they occur. (a)
scheme with cubic mesh; (b) edge elements with cubic mesh; (c) vertex scheme with cubic mesh; (d) edge sc
with Sommerville mesh; (e) Vertex scheme with sommerville mesh.
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FIG. 4. lIsosurfaces of the fractional error in the phase velocitije isosurface chosen is fer = 1 x 1073,
and we show the regior{1, 1] x [—1, 1] x [—1, 1] inkh space. The Sommerville mesh gives a more symmetric
error in both cases. (a) Edge elements on the cuboid mesh; (b) edge elements on the Sommerville mesh; (¢c)
elements on the cuboid mesh; (d) vertex elements on the Sommerville mesh.

series expansion on the analytic fields at timg =t, + At, namely,

1 92E
+ E(At)2<—) + O(At),
n tI‘l

oE
E(t ~ E(t At —
(tn1) ~ Ety) + ( o ) e

t

where from Maxwell’s equations (for constainte) we have that

2

—z =~V x V xE= (1/1e)V2E,
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using the fact thaV - E = 0. Since the approximate fields do not have zero divergence, tl
first expression is used to derive the second-order accurate time-derivative expression

1 oE
(Eptt —Ep)/At + S(At/HOV x V x El ~ <8th> + O(At?) (3.2)
th
n+1 n 1 n dHh 2
(HR —Hp) /At + 5(At/ue)v x V x H ~ - + O(At?). (3.3)
t

Substituting these time-derivative approximations into the semidiscrete equations (1.8).
obtain

En+l_ ED 1
<6¥’%> — (V x Hp, ¢on) = —EAt (L'V xE},V x ¢n) (3.49)

(HE-H B HR) n 1 -1 n
W—x¢  %n + (V< Ef, ¢n) = _EAt(E V x HR, V x ¢n), (3.4b)
where theO(At?) surface integrals resulting from the integration by parts of diw-
squared term&ave been discarded.

3.2. Numerical Results for Wave Propagation

The numerical experiments described below are for plane-wave propagation throug
cube-shaped region, which has been meshed by tetrahedra; two cases are considerec

(i) uniform right tetrahedra obtained as in Fig. 1a, from a starting mesh ®fN x N
cubic cells;

(i) apartially randomised version of (i) obtained by randomly displacing the coordinat
of each mesh point by a distance at magi82/N) in thex, y,andz directions.

A comparison is made between the edge-element combinations (1.4) and (1.5), the ve
element (1.7), and (on the uniform mesh) the Yee scheme on the underlying cubic lattice.
previous section showed right tetrahedra to give much poorer performance than Sommer
tetrahedra; consequently the comparison gives the Yee scheme a considerable adval
The random mesh is also a demanding choice for the finite-element methods since
automatic mesh generator would generate smoothly varying tetrahedra. For the Yee sct
the time step is chosen to be the optimal step (the maximum step consistent with stabil
The time stepAt for the vertex method is chosen to b&8lhe length of the shortest edge

in the mesh (this is by no means maximal), and for the edge scheme the time step is the
computed using the local analysis outlined in the Appendix (but decreased, if necessar
thatt = 3 is an integer multiple of the time step).

The test problem is the propagation of a smooth Gaussian wave given by

E=Eog(k-x—1t) and H =Hggk -x—1),

whereg(t) = exp(—10(s — 1)®) for 0 < t < 2 and is zero otherwise, arld= (cog#)
cog¢), sin(@), cogh) sin(g)), whered = ¢ = 0.5 (the Yee scheme had exact propagatior



EDGE-ELEMENT METHODS 625

in the co-ordinate directions). The polarisation of the wave is

Eo = (—sin(®) cog¢), coq6), —sin(9) sin(¢))
Ho = (=sin(¢), 0, cos¢)),

and for this simple wave-propagation problem the boundary data are given by the e
solution.

To obtain a quantitative comparison of the error in the various schemes, we shall disy
plots of the discrete relative? error as a function of the number of degrees of freedon
in the problem (number of unknowns). The following discreteerror can be defined for
each scheme,

(|7EE® — En® | + |7 H®) — Ha®||D) "
(ImEED|F + [ He 5

: (3.5)

whererF andr!! are the appropriate projection operators for the electric and magnetic fie
spaces for a given scheme. The error is evaluated when the wave has traversed approxin
85% of the cube diagonal. The discrete maximum error for each method is also compu
This can be formulated in the same way as (3.5); however, since the basis functions
linear, this discrete maximum norm is the same as evaluating the relative maximum errc
the degrees of freedom. Comparing the numerical solution with the appropriate projec
of the true solution is necessary to obtain a proper assessment of the edge-element sc
as the solution is much more accurate at the locations of the degrees of freedom
elsewhere, as is clearly visible in Fig. 5. A conventiohalerror would simply show the
O(h) interpolation accuracy of the basis functions.

The uniform mesh results are shown in Fig. 6a and 6b, where the error is plotted age
the number of degrees of freedom of each method rather than the mesh size. The initial s
of the lines in Fig. 6a is consistent with an error proportionaDit?) for all methods, but
on finer grids the convergence rate is more consistent@iti®/?) for the edge and vertex
methods. In this case the Yee scheme is the most accurate and the edge scheme the
accurate method, despite the superconvergence effects at the degree-of-freedom loca
This superior performance of the Yee scheme is to be expected on uniform meshes

0.0 05 1.0 15 20 0.0 0s 1.0 15 20

FIG. 5. Basis function representation of three components of the edge-element electric fieldd and
N = 16 on the uniform cuboid-based mesh; (a) shows the finite-element function along tlkediye= 1 and
(b) shows an improved reconstruction by linear interpolation of edge midpoint values.
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FIG.6. DiscretelL?error on uniform (a) and randomized (c) meshes, and the discrete maximum norm error
uniform (b) and randomized (d) meshes, plotted against the total number of degrees of freedom. Results are s
for the edge and vertex schemes, together with sight lines correspondigt@andO(h?) rates of convergence.

serves to confirm that finite element methods are only justified when geometric flexibil
is required. Fig. 6b shows that in the maximum norm all the methods are approximat
second order; however, overall, the Yee scheme is still the most accurate. Interestingly
magnetic field computed by the edge or vertex schemes is substantially less accurate
the corresponding electric field. It appears that the error in the magnetic field accounts
the slight slowing of convergence evident in Fig. 6a.

The discrete least-squares errors for the edge and vertex schemes on the randomisec
are shown in Fig. 6¢. The vertex and edge schemes are convergdié3ton the coarse
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grids but the rate of convergence may be slowing down on the finer grids. Nevertheless
edge scheme is still converging faster ti@a¢h), so super-convergence of the method at the
degrees of freedom seems to be insensitive to the grid perturbation we have used. The
in the edge scheme is roughly 4.5 times the error in the vertex scheme for a given nun
of degrees of freedom.

The discrete maximum norm error plots for the randomised mesh are shown in Fig.
and show that in this norm both methods are convergin@ @b (compared taO(h?) on
the uniform mesh). This is not necessarily inconsistent with the least-squares error re:
in Fig. 6¢, since it is possible that there is considerable error (maybe associated with “pc
tetrahedra) but that this error is confined to small volumes in the mesh. As in the ¢
of the uniform grid, the electric field is approximated better than the magnetic intens
(particularly for the edge scheme where the electric field is almost converging to sec
order).

4. SCATTERING FROM A SPHERE USING TETRAHEDRAL MESHES

This section describes the calculation of the broadband radar cross section of a perf
conducting sphere using both vertex and edge elements. This is a more realistic settir
which to compare methods, although reference to the exact Mie solution is complicatec
the use of approximate absorbing boundary conditions and polygonal approximations tc
spherical surface. The comparisons are necessarily qualitative but show that accurate re
can be obtained and that the accuracy is significantly affected by the choice of excita
boundary condition and by the method used for recovering the far fields. The vertex met
is successful for this problem because the scatterer is smooth and convex.

Let Q2 be a sufficiently smooth region with = Q1 U , as shown in Fig. 7. A scattered-
field formulation was adopted for this exterior scattering problem. Since Maxwell

QObserver

FIG. 7. The scatterer (with boundaff2) occupies the shaded region.
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equations (1.1) apply directly to the scattered fields, we simply need to provide boul
ary conditions on the surface of the scattéd@g and on the artificial truncation boundary
0Q. The conditions used are

Exv=—Ejnxv VX € 0Qs, (4.1a)
Hxv=1+/e/uEr VXe i, (4.1b)

whereE andH now refer to the scattered electric and magnetic fidiglg, is the known
incident electric fieldEt = v x (E x v) is the tangential electric field, andis the unit
outward normal. In addition, the initial scattered fieldié«, 0) andE(x, 0) must be given
(in our caseH(x, 0) = E(x, 0) = 0). The Silver—Muller condition (4.1b) 02, could also
have been imposed as

Exv=—y/u/eHT, 4.2)

whereHt = v x (H x v) is the tangential magnetic field. Applying the Silver—Muller con-
ditions at a finite distance from the scatterer results in an approximate absorbing boun
condition which is exact for outgoing spherical waves.

4.1. Absorbing Boundary Conditions

4.1.1. Edge elementsThe excitation boundary condition (4.1a) can be imposed strong|
with edge-element basis functions (1.4), i.e.,

En xv = —(ﬂrFEinc) XV VXe 892, (43)

in terms of a projection of the incident field. A space of test functions with zero componel
along boundary edges can also be easily constructed:

¥ =yn e Ud = {Yn|¥n x v=0,Vx € 3%}
Usingthese testfunctions, € UQ with the semi-discrete equations (1.6), and imposing th

absorbing boundary condition (4.1b) weakly (see [44] for a frequency domain formulatic
leads to time-discrete edge-element scattering equations similarly to (3.1),

ER+1 - Eﬂ n+(1/2) _ € n n+1
‘\—ar ¥n | — (Hp VX ) = — @< nt + Ent ’I/fh>moc (4.43)

HE+(1/2) _ HE_(l/Z)
At

,¢h> + (V x E, ¢n) =0. (4.4b)

Ifthe ne edge degrees of freedom &£t are numbered last, then the corresponding algebra
system can be written as

M (EML— &M + %At M/(EML 4 M) = AtCHM /2 (4.5a)

Mu (Hn+(l/2) _ Hn—(l/Z)) — _Atch_n’ (45b)
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where
e the vectors of electric and magnetic degrees of freedons asg(Ey, ..., En,n.) ",
and {2 — (Hf+(1/2) H,r\1‘+(1/2))'r 52 (E; En )T
g ey f l 9 ey e )

e M, M, e RNe—nexNe—Ne gre the edge mass matrix and the outer surface mass mat
respectively,

e M, € RNNt js the (diagonalisable) magnetic field mass matrix,

e C e RNexNt 5 the curl matrix.

The surface mass matrid, can be assembled and combined with the standard ma
matrix M. and the resulting system can be solved (see the Appendix) at each time stej
a diagonally preconditioned conjugate gradient method [24]). An efficient parallel impl
mentation is described in [30].

4.1.2. Vertex elementsFor vertex elements, tangential boundary conditions of the forr
(4.3) are awkward to impose strongly because of the Cartesian form of the basis funct
a.7).

We appliedintegration by parts to therl termin (1.8a) to allow both boundary conditions
(4.1a) and (4.1b) to be imposed weakly in a manner similar to the Silver—Muller condition
(4.4a) and applied the same procedure taHtequations utilising (4.2). The time-discrete
vertex-element equations for the scattering problem are then (following (3.4))

(Ep** —Ep)
<€At’ <ph> — (HR, V x¢n) = —(HR x v, 0n),0 — (Ve/HENT, ¢n)4e

1
- EAt (,flv x Ep, V x (ph), (4.6a)

(3" Hy) :
pe— o on |+ Bn V oxen) = —(Binc X v on)yo — (Vi/eHRr on)aq

1
- At (e7'V x H], V x ¢n). (4.6b)

Denoting the vectors of electric and magnetic degrees of freedom for this c&s#as
R3\., this can be written as the following matrix problems for each time atgpvhere
M., M, C, D, D, € R®:*3N: are the electric and magnetic field mass matrices, the cu
matrix, and the curl-squared matrices, respectively; note that the mass matrices are t
diagonal, with blocks corresponding to each of the three Cartesian components. The m
problems are

M. (™ — €M) = At {CH” —Gh 4 %At DMS”], (4.7a)
M, (K™ — H") = At [CE“ —Gh+ %At DEH“} , (4.7b)

whereGg andGy are collected surface-integral terms. These terms have been left expl
(unlike the edge case (4.5)) to avoid coupling together the surface Cartesian field con
nents.

An interesting question arises with regard to the common practice of lumping the m
matricesM, and M,,. The following approximation to the third-order term in the Taylor
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series could be implemented (K. Morton, private communication, 1994), without addi
additional complexity to the method,

Ewe &~ —(1/pne) VAE"™ — E")/At (4.8)

(the Laplacian operator would be preferred in this case since it leads to a block diagc
peturbation), so that (4.7) becomes

1 1
(Me + éAtZLM> (EM &M = At [CH” -G+ EAt Dﬂgn} , (4.9a)
1 2 n+1 n n n 1 n
M, + gt Le ) (B™ —B") = At|CE" -G} + éAtDeH , (4.9b)

whereL , andL. are scaled Laplacian matrices. The peturbations clearly have a diagor
ising effect on the mass matrices, and on certain regular meshes the off-diagonal term:
all negative, so there will be a choice &t which diagonalises all the mass matrices. Mas:
lumping could therefore be argued to produce an increase in the accuracy, as well as
stability, of the time discretisation. Consequently, although we have retained a consis
mass matrix in our calculations, it may be that the vertex results can be improved by m
lumping.

The excitation boundary condition (4.1a) can be imposed strongly in the vertex elem
method [33] despite the requirement to assign values to tangential field components.
first step is to define vertex normals and this can be done by averaging boundary-f:
normals to their common vertices. A time-discrete form of Eqgs. (4.6) is then solved f
the field components at every vertex on the mesh. The fields at each boundary verte»
then locally resolved into normal and tangential components and the tangential compon
altered to match the required values. Recombining these tangential components with
unaltered normal component recovers the Cartesian component fields for the next time -
This approach has the disadvantage of introducing errors at sharp corners. The figure
Section 4.4 show a comparison of the two approaches to enforcement of these boun
conditions.

4.2. The Radar Cross Section

The quantity of interest is the radar cross section, a measure of the reflectivity of
scatterer. For a perfectly conducting object under plane-wave illumination, the RCS «
given frequency is defined as

2
E® _(r
RCSw) = lim_ 4m2M (4.10)

[Edl’

wherer is the distance from the observer to the scattegr,, is the scattered electric
field amplitude at the observer, afg, is the incident field amplitude at the scatterer. In
general, the RCS will depend on the direction of the incident wave relative to the scatte
though obviously not in the case of a sphere. It will also depend on the angle between
observer and the incident wave; the results in this section are fantim®staticRCS in
which the observer direction is the same as the incident direction, i.e., reflection back in
line of sight. Because of the linearity of the problem, a time-domain method gives acc
(via a discrete Fourier transform of the time-varying fields) to the periodic amplitties
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andH® over the range of frequencies that are excited (see [41] for a description of t
technique combined with the Yee scheme). This has the advantage of allowing the RC
be calculated over a range of frequencies in a single simulation. The pulse excitation
was used gave adequate excitation up to the highest frequencies resolvable on the ava
meshes.

The scattered field at infinity is recovered from the computed fields on a convex collect
surfaced$2. € Q" surrounding2s, using the standard asymptotic approximation [13] (se:
Fig. 7 for orientation details).

eXr 1
Eo(r) = # {Eoo(f) +0 (lrl)} | = oo. (4.11)
where the far-field patterts,, defined on the unit sphere, are given in terms of the compute
fields ono ¢ by
ik .
Ewof) =, Fx | (o) x E°() + [v(r) x H(1)] Ple ™ ' dsr’).  (4.12)
T ETIoN
Itis not obvious how best to approximate the integrals in (4.12), and in general the res
will depend both on the interpolation method adopted and on the choice of collect
surface. The use of the scatterer itself is an obvious choice; however, it requires a one-<
interpolation for the tangential magnetic field contributions in the case of edge eleme|
An example of the use of the Yee scheme can be found in [42]; the use of a stair-stef
approximation to the sphere gives rather poor results, as would be expected.

4.3. Flux Recovery

Of the two surface integral contributions in (4.12), it is the latter which creates tl
most obvious difficulties for the edge-element method since the tangential magnetic f
components are not well defined on any surface composed of faces of tetrahedra. -
can be estimated by interpolation, but it would be preferable to have a robust and acct
method for recovering these quantities. The general form of the surface integral or functic
required is

/ vxH, -gdA, (4.13)
I

and an alternative to its direct calculation is to derive an equivalent expression from
global solution.

Letv be a vector field which has zero tangential componengganis suitably smoothin
both2; andQ2; but discontinuous across the collection surface with a jump, in its tangent
components equal @ and has a smooth tangential vector fieldisn; i.e.,

v xV=00nd%Qs,

[vr] = gonaf..

The electromagnetic field amplitudE$ andH< (takingE(x, t) = R{E®(x)€ “!*®)}) sati-
sfy the frequency domain Maxwell equations; these can be written in weak form as

iw(eE”, ¥) — (H”, V x ) = (v x H”, ¥), (4.143)
iw(uH?, ¢) + (V x E?, ¢) = 0. (4.14b)
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We can choos@ = v in (4.14a) by restricting the domain to eith@g or Q2,; thus

ia)(eE‘”, V)Q1 — (Hw, V x V)Q1 = (v X H®, V)an, (415&)
iw(eE”, V)g, — (H”, V x V)q, = (2 x H”, V)sq, — (/ E/ME%’,V%QOC, (4.15b)

and adding these two equations gives the desired functional

/(ule“’)'gdAz/ (v1 x H®) - [vr]dA
02 Q2%

=iw(E® v)— (H* V xV)+ <\/e/,uE‘f’,V>aQoo
= ag(E“, H”; v). (4.16)

The far field (4.12) can be written as a functional by taking its dot product with any ur
tangent vectoe on the unit sphere; i.e.,

R ik , o oy ki /
e-Ew(r)zg{/ ) xEUr") - (ex e ™" dAr")
02

+ (u(r’)wa(r/)).((fxe)xf)e—ikf-"dA(r’)}. (4.17)
02

Then direct comparison between (4.16) and (4.17) shows that by taking
[vil =g=((F x & x F)e” ¥ (4.18)

the functional can be rewritten so that the surface integral terms depending on the tange
magnetic field components @192; are replaced by volume integral terms depending on th
global solution, as required:

e Ex(f) = % { ex ) (') x E°(r')e ™ "d A+ ag (E?, H?; v)}. (4.19)

92
The choice of three independent unit veciars,, e3 then allows a complete determination
of E(f) for any givenf. Note that this definition is independent of the continuation of
into 21 and2,. To see this, supposa andv, are two choices of satisfying the above
jump conditions; thew; — v is a continuous function on the whole @fand can be used
as a test function in (4.14a); i.ag (E“, H®; v; — Vo) = 0. Consequently we are free to
choose the continuation gfin such a way as to minimise the extra computation created t
replacing a surface integral by a volume integral. To see how to do this, assurg tred

H{ are the edge finite-element approximate solutions to the frequency domain Maxwe
equations; then by an analogous procedure to the exact case we have that

e-Eh,mzi{/ (exF)- (v(r) x Ep(r))e ™ d Ar) + ae (Ej, ﬁ)th)}: (4.20)
47T Qe

wherevy, is an edge finite-element function (1.4) (i.e., with tangential degrees of freedo!
on 1 or 1, but discontinuous acro$$£2. such that

V XV = 0 0noaQs,

[Vh,T] = gh ON 02,
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where
gh ~ (F x €) x fe k", (4.21)

In fact we takeg, to be the interpolant off x €) x fe~ " on 9 . A useful choice for a
practical implementation of the extraction procedure is
vh = 00nQq,

vy = 0 at all interpolation points i€y,

and v, 7] is as discussed above. In this case

ag (B Hpive) = > / io(EY-vn) — HE - vah)dv (4.22)
KeQq

BKW}QC#VI

Thus the volume integral need only be performed over a thin “skin” of wii¢th) outside
9. This looks rather “one sided”, but is merely a convenient choiag, of

These expressions require slight modification @i\ t)? peturbation) in our case since
Ep andH{ are obtained from time-domain values using a discrete Fourier transform. Ct
sequently (4.22) is replaced by

ela)At/Z e iwAt/2
ae (Ef. HY: vh) Z / ( (Ef -vn) —H{ -V x vh) dVv. (4.23)

9KNIQeHAD

This type of reformulation has been used in many other finite-element contexts in wh
a flux surface integral is required and can be shown to improve the asymptotic orde
accuracy of the far field. The error analysis is outlined in Appendix 2, and despite the fil
order accurate nature of the terms in (4.20) the far field can be shown to be second-or

4.4, Results

Time-domain scattering calculations for broadband illumination of a perfectly conducti
sphere were carried out using both the edge-element approximation (4.5) and the ve
element approximation (4.7). The RCS was calculated as a function of wavelength
compared with the exact Mie series solution. For the vertex-element case the RCS
calculated as a function of wavelength by direct approximation of the complete far-fie
integral. The following two meshes of a conducting sphere of radius 0.25 containing dom
[-1, 1] x [-1, 1] x [—1, 1] were used:

e Sphere I Ny ~ 70,000, N ~ 90, 000, N, ~ 13, 000
e Sphere 2 Ny ~ 110, 000, Ne ~ 230, 000, ~ N, ~ 19, 000

It can be seen in Fig. 8 that the mesh Sphere 2 resolves the sphere significantly better
Sphere 1 by using a more refined mesh closer to the surface.

Figure 9 shows a comparison of vertex element RCS calculations for both the strong
the weak imposition of the boundary excitation (4.1a) for the finer mesh. The normali
echo area (Ira?) RCS () is plotted against the sphere radius in wavelengths so that refle
tivity is plotted against frequency. The complete curve was obtained from a single scatte



634 MONK AND PARROTT

2 2 rs
SISO I A A O
KR S R R DK DA e N
18 B 5 B S TN S A S SV &St
SIS NN DASKIAR ALY
R * QPN

16 a DN zgg,;;\"";‘g%b
) 4 e N

Y

I NCEARK
AT

08 0.8
s
oy
08 P>
£
\
04 04 ﬁ@\'l‘\ a0 ‘A% £ N
Ao AN AN 4N N S X
VA VA e LN SN N ST
PORNEA NS AT AR
oz 02 "f,‘ "“}’A\“é\“%' VA%EINEok N 545 ’»‘"!‘n#%\v
R SRR IR AN S
. A RN AAPSIIRA K
V] 02 04 06 08 1 12 14 16 1.8 2 [¢] 0.2 0.4 0.6 08 1 1.2 14 16 18 2

(a (b)

FIG. 8. Tetrahedral mesh sections indicating the geometry resolution of the meshes used in the scatte
calculations. (a) sphere N( ~ 13,000); (b) sphere 2N, ~ 19,000).

calculation by discrete Fourier transform of the time varying fields over the required rar
of frequencies. In this case there ar82 elements along the sphere circumference givin
approximately five elements per sphere radius. The far fields have been computed b
rect approximation of (4.12) evaluated on collection surface positioned roughly halfw

Off-Surface RCS for the Mesh Sphere2
10 r o T.. . T 1.

Normalized Echo area
)

-
o-

[ L3 []
0 0.1 0.2 0.3 0.4 0.5
Sphere Radius in Wavelengths

FIG.9. Comparisons of the computed vertex element RCS for a sphere with the exact Mie series solution (s
line), comparing the weak imposition () of the scattering boundary conditions (dashed line) against the str
imposition (1) using averaged normals (dashed—dotted line). The lower solid line shows the energy distribu
of incident Gaussian pulse.
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between the sphere and the outer boundary. The variation of the backscatter coefficient
frequency is accurate to better than a decibel up to an electrical sizexpt0r8esponding
to a resolution of 10 elements per wavelength. The results confirm that the weak imposi
is superior (and is also easier and more natural to implement) with the improvement
significant at the high-frequency sampling of the time-varying fields. They also confirm t
effectiveness of the weakly imposed Silver—Muller conditions for this element (they &
imposed at a distance of around L & the shortest wavelength sampled), despite its bein
a first-order condition.

Figure 10 shows a comparison of edge-element RCS calculations for the collect
surface positioned either on the surface of the sphere itself or roughly halfway betw
the sphere and the outer boundary. The RCS was calculated both by direct approximatic
the complete far-field integral (4.12), using one-sided estimatiqgfgcfs(v x H®) - dA,
and by the new flux-recovery form (4.20). It can be seen that the use of a new far-fi
recovery procedure has led to more accurate results for backscatter coefficients on t
meshes. This supports the assertion in Appendix B that this technique for the reco

Off-Surface RCS for the mesh Sphere1 On-Surface RCS for the mesh Sphere1
T T T T T T T

Normalized Echo area
Normalized Echo area

-2 ; i H i i
10 3 04 05

-2 i N "
1 [ ot 02 03 0.4 05 ] 01 02 0. .
Sphere Radius in Wavelengths Sphere Radius in Wavelengths
(a) (b)
Off Surface RCS for the mesh Sphere2 On Surface RCS for the mesh Sphere2
T T T T T T T

Normalized Echo area
Normalized Echo area

; 107 ; . H H H
02 0.2 X 05 o [} 01 0.2 03 04 05
Sphere Radius in Wavelengths Sphere Radius in Wavelengths.

() (d)

FIG. 10. Comparisons of the computed RCS using the edge-element method for the Sphere 1 and Sph
meshes with the exact Mie series solution (solid line), using far fields calculated using the standard formule
(dashed line - - -), and using the flux-recovery formulation (dash—dotted life (@) Sphere 1: off-surface RCS
collection surface; (b) Sphere 1: on-surface RCS collection surface; (c) Sphere 2: off-surface RCS collec
surface; (d) Sphere 2: on-surface RCS collection surface.

0 01
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of far fields from first-order edge-element solutions results in second-order accuracy. -
on-surface recovery procedure appears to be robust, avoids the need to define colle
surfaces, and provides the most accurate results.

The edge-element calculation provides accuracy comparable (with the new far-field
covery) to that of the vertex-element calculation on the same mesh. As noted earlier,
edge-element method is the more expensive calculation because of the greater numk
degrees of freedom; however, the vertex method is still severely restricted in 3D to scatte
with smooth surfaces and no reentrant corners.

5. CONCLUSIONS

A 3-D dispersion analysis of the edge-element finite-element method on tetrahec
meshes has been carried out and compared with vertex elements. The analysis cl
demonstrates that the mesh character has a significant influence on phase accurac
moreover that a “uniform” Sommerville mesh works better than right tetrahedra in both t
cases. The difference is particularly pronounced for edge elements. The analysis also sl
that the vertex scheme is fourth-order accurate in phase error, compared to second-
for the edge scheme.

Comparative results for numerical wave propagation demonstrate the advantage o
vertex elements, and implementation issues support this advantage. The loss of acct
observed with partially randomised meshes is significant; however, the overall rate of c
vergence remains close to second order.

Results for scattering from a sphere show that, with weakly imposed boundary conditic
the vertex method is still more accurate on the same mesh and should be cheaper to con
However, the advantage is not as pronounced as in simple wave propagation and use
new far-field recovery procedure leads to equivalent accuracy with the edge method.
on-surface recovery procedure appears to be robust and avoids the need to define colle
surfaces. These results supportarguments, based on the analysis in the Appendix, for se
order accuracy for the edge-element recovered far fields.

APPENDIX A

Algebraic Properties

Although the discrete system of equations require the solution of an algebraic syst
at every time step, they still have a time step stability limit; in fact, the algebraic systel
are well conditioned and are easily solved using a small number of diagonally precor
tioned conjugate gradient iterations. The following sections develop estimates of the c
vergence rates for the CG iteration and of the time step restriction, based on the approa
Wathen [43].

Edge Elements

For the case of edge elements, the magnetic field mass nhatiix(4.5) can be diago-
nalised and hence easily solved. The electric field mass m¥dtrixiowever, is symmetric,
positive definite, and sparse (see [18] for an analysis of the sparsity patteriv)Lia¢ the
mass matrix for elemerX € Qy, and IetDéK be the diagonal matrix formed from the main
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diagonal ofMX. Then the eigenvalues of the diagonally preconditioned mattiare real
and lie in y, Ay], wherex; = mink cg, AR, Ay = MaX cq, AR, and

Tp K TpK

- XM X X' M2 X
AR'™ = min c— and AR =max——=<—.
x#0 XT DKx x#0 XT DKx

For the cuboid grid based on the unit cell shown in Fig. . YA, = 6.433, which implies that
at each step of the preconditioned conjugate gradient algorithm, the error is decreased
factor of approximately 0.43. For the Sommerville grid, the above analysis gives a condit
number estimate of 5 and hence a convergence factor of 0.38 per conjugate gradient s
Next we turn to the problem of choosing a stable time step. Numerical computatic
of wn on the cuboid-based grid show that maxh ~ 8.5 and hence the leap frog time-
stepping scheme has a stability constraintof h < 0.23, whereAt is the time step and
h is the length of the sides of the cubic mesh which underlies the tetrahedralization. F
nonuniform mesh, the stability bound is more difficult to compute, so we outline a meth
for computing a quick approximation to the stability bound using the methods of Wathe
Assuming zero boundary data and applied current, eliminating the magnetic field fr
(4.5) gives

M (EML — 26" + &MY 4 (AD2CTM — e = 0.
From this it is clear that ifo]'®* is the largest eigenvalue of the generalized eigen probler
@MV =CTMCV,

the method is stable provided\{)w"™ < 2. But sinceV x UN c W we know that
CT M, 'Cisjustthe matrix corresponding to the bilinear faan, v) = (V x u, u ™'V x v).
Hence ifS is the elemental matrix corresponding to the bilinear form

aK(u,v)z/ Vxu-pu v xvdV
K

and if MX is the elemental mass matrix as before, then

o™ < maxwpg®,
K GQh

whereow?®* is the largest eigenvalue of the local eigenvalue problem
K
wﬁ MEKﬁ = .

Of course, such an estimate is likely to be rather poor if there are only a few very “poc
tetrahedra in the mesh, but we have found that it performs quite well in practice.

Vertex Elements

In this case botivl. andM,, are symmetric, positive definite, and sparse, and the Wathe
bound on the condition number of the preconditioned maktixis 5, independent of the
mesh, giving a convergence factor of 0.38 per conjugate gradient step. This indicates
conjugate-gradient method should converge faster for the node-based scheme than fc
edge-based scheme, although it requires two conjugate gradient solves per time step.
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APPENDIX B
Far-Field Errors
Note that
ik . e,
€ Exw—€ Ewh=-—— / (ex fexp(—ikf -r')) - (E” —Ep)dA
4\ Joues

+ ag(E“, H?; v) — aE( n Hys Vh)} .

We choose& = v}, and letz be any sufficiently smooth function with a possible jump acros:
0Qcs. Then

ag(E®, H”; v) — ae(Ep, H; vi) = ag (E” — Ep, H? — HY; vy — 2)
+aE(E‘“ - ﬁ), H” — thl)§ Z)-
We want to choose so that the paifz, w) satisfies the transmission problem
—ikw —V x z=0in Q1 and$2,,
—ikz+V xw=0inQ; andQy,
v X W= 00ndQs,
[Wr] = fonoQs,
[z1] = (T x € x T exp(—ikf - r") on s,

v X W —Z1 = 0 0noQjpns,

wheref is as yet unspecified. For edge spaces, the magnetic equation is satisfied exact
that

1
HY —Hi = oV x (B — Ef).

It can then be shown, using the boundary conditionsif@nd the jump conditions fow
andz to simplify the boundary term, that

ag(E” — Ef, H” — Hit; 2) =/ v x (E” —Ef) - [wr]dA
agZI'CS
Hence
ik

e-Eoo—e~Eh,oo=E{aE(E‘”— voHY — f‘{;vh—z)+/e~fx(vx (E®

—Ey)) exp(—ikP - 1) + v x (E® — Ef) - f dA}_

We can now make the choice

f(r'y = —(e x F)1 exp(—ikf - r’)



EDGE-ELEMENT METHODS 639

and obtain the estimate

e-Eoo—e-Eh,oozgaE(E — Ep,H? —Hp v — 2)

which indicates that, for first-order edge elements, the method will provide second-or
accuracy for the far fields. The use of the time-domain method will not change the estim:
by more tharO(At?).
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