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Edge-element methods have proved very effective for 3-D electromagnetic com-
putations and are widely used on unstructured meshes. However, the accuracy of
standard edge elements can be criticised because of their low order. This paper anal-
yses discrete dispersion relations together with numerical propagation accuracy to
determine the effect of tetrahedral shape on the phase accuracy of standard 3-D edge-
element approximations in comparison to other methods. Scattering computations
for the sphere obtained with edge elements are compared with results obtained with
vertex elements, and a new formulation of the far-field integral approximations for
use with edge elements is shown to give improved cross sections over conventional
formulations. c© 2001 Academic Press

Key Words:Maxwell’s equations; edge elements; dispersion relations; tetrahedral
meshes.

1. INTRODUCTION

Accurate electromagnetic wave propagation computations are required in areas such as
radar cross-section calculations, antenna design, electromagnetic compatibility modelling,
and microwave tomography. Edge-element methods are one of the methods in active use in
all these applications; however, despite their popularity, the inherent accuracy of the standard
edge element is not easily analysed, lying somewhere between first and second order. Higher
order edge elements provide better convergence rates [12] but are relatively expensive
when used on unstructured meshes. Conforming elements encounter severe difficulties with

1 Research supported in part by AFOSR.
2 Research supported in part by EPSRC/DTI and BAe.

614

0021-9991/01 $35.00
Copyright c© 2001 by Academic Press
All rights of reproduction in any form reserved.



EDGE-ELEMENT METHODS 615

singularities at rentrant corners in 3D and are currently not an option for such domains,
although recent work [1, 2] on singularity subtraction has shown some success in 2D.

Maxwell’s equations in free space are a first-order hyperbolic system, but can be refor-
mulated in a wide variety of ways, e.g., as second-order vector wave equations in either of
the two electromagnetic fields, or as complex vector Helmholtz problems in the frequency
domain. This paper uses time-domain implementations for the numerical testing (allow-
ing efficient broadband comparisons to be made); however, the results are also relevant to
the frequency domain. We analyse edge-element approximation of the first-order system,
partly for ease of comparison with finite-difference time-domain (FDTD) and the conform-
ing element method. However, it should be noted that this formulation is equivalent to an
edge-element approximation of the second-order electric field wave equation.

The edge-element method has been proposed by numerous authors. The interpolation
properties of these elements were analysed by N´edélec [38]. Their use in low-frequency
eddy current problems is reviewed in [9], and for time-harmonic scattering see [14]. We
restrict our study to the lowest order elements which are related to Whitney forms [8]
and have been discovered independently by Cendes and co-workers [6]. The use of these
elements in the time domain has been examined by Lee and co-workers (see [19, 20], and
references therein). The same elements have also been investigated in the context of radar
calculations in [23, 24] where suitable absorbing boundary conditions are discussed in some
detail (see also [11]). For a full history of the elements, as well as many useful practical
details, see Jin [17]. We have not considered related approaches, such as the the co-volume
approach of [16, 25] since they are restricted to Delaunay–Voronoi meshes.

In this paper we are specifically concerned with the accuracy of the edge-element method
for electromagnetic wave propagation, when used on unstructured meshes. We also de-
scribe how to obtain improved estimates of far-field quantities when the method is used
for scattering calculations. Reference points for this assessment are provided by the Yee
finite-difference scheme and conforming linear elements [33], and the main tools used are
discrete dispersion relations and numerical comparisons of results for wave propagation.
Scattering from a sphere was used to provide more realistic, albeit qualitative, tests of wave
propagation for edge elements and for conforming linear elements (see also [31]).

The scattering coefficent depends on far-field quantities which are themselves surface
integrals of computed near fields; the low-order nature of edge elements makes these inte-
grals awkward to approximate. Conventional finite-element approximations of fluid flow or
heat transfer have a similar difficulty in retaining their accuracy when approximating flux
integrals. The approach taken [3–5, 46] is to reformulate the integral in a variational form;
we show that this approach can be applied in 3D to the far-field integrals (see [32] for a 2-D
formulation), resulting in a novel formulation which significantly improves the accuracy of
broadband scattering computations using edge elements.

1.1. Finite-Element Approximation of Maxwell’s Equations

Maxwell’s equations for the electric fieldE and the magnetic fieldH on an isotropic
nonconducting domainÄ are

εEt −∇ × H = 0, (1.1a)

µHt +∇ × E = 0. (1.1b)
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These equations can be written in a weak form, for any sufficiently smooth functions
φ(x, y, z), ψ(x, y, z) ∈ (L2(Ä))3, as(

ε
∂E
∂t
, ψ

)
− (∇ × H, ψ) = 0, (1.2a)(

µ
∂H
∂t
, φ

)
+ (∇ × E, φ) = 0, (1.2b)

where(ψ, φ) = ∫
Ä
ψ · φ dV.

A finite-element approximation to the electromagnetic fields can be written in the form

Eh(x, t) =
NE∑
i=1

Ei (t)ψh,i (x) and Hh(x, t) =
NH∑
j=1

Hj (t)φh, j (x) ∀x ∈ Äh, (1.3)

whereEi (t) andHj (t) are time-dependent degrees of freedom,NE andNH are the number
of degrees of freedom for each field, andψh,i andφh, j are finite element basis functions.
In the formulations described below, the domain of interestÄ has been covered by an
unstructured tetrahedral meshÄh consisting ofNt tetrahedra of maximum diameterh, with
Ne edges,Nf faces, andNv vertices.

1.1.1. Edge elements.This paper is principally concerned with the first-order Nedelec
elements where, in (1.3),Ei are the tangential electric field components on each edge, and
Hj are face normal components of the magnetic flux. The numbers of degrees of freedom
for the two fields are thenNE = Ne andNB = Nf . The electric field basis function for the
ith edge, of lengthsi and connecting vertices{m, n}, is given by

ψh,i (x) = si (ϕm∇ϕn − ϕn∇ϕm), (1.4)

whereϕ is the conventional piecewise-linear basis function, taking a value 1 at vertexm
and 0 at any other vertex. It is sometimes convenient to combine the edge length with the
degrees of freedom.

The magnetic flux basis function for thej th face, connecting vertices{l ,m, n}, and of
areaAj is

φh, j (x) = 2Aj [ϕl (∇ϕm ×∇ϕn)+ ϕm(∇ϕn ×∇ϕl )+ ϕn(∇ϕl ×∇ϕm)]. (1.5)

The numbers of degrees of freedom for these elements are consequentlyNE = Ne and
NB = Nf . Since they do not have a well-defined curl, (1.2a) is first integrated by parts so
that the semidiscrete edge-element approximations to (1.2) are(

ε
∂Eh

∂t
, ψh

)
− (Hh,∇ × ψh) = −〈Hh × ν, ψh〉, (1.6a)(

µ
∂Hh

∂t
, φh

)
+ (∇ × Eh, φh) = 0, (1.6b)

where〈φ,ψ〉 = ∫
∂Äh φ · ψ dSandν is the outward facing normal on∂Äh. The boundary

term in (1.6a) either will be zero or will be used to weakly impose an absorbing boundary
condition (see Section 4). The electric-field approximation is that of the standard first-order
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edge-element method. It can be seen from (1.4), (1.5), and (1.6b) that the time derivative
(time difference in the fully discrete case) of the magnetic field degrees of freedom is exactly
the discrete curl of the electric field. It is straightforward to show that this formulation
is equivalent to an edge-element method used directly on the second-order electric-field
problem.

1.1.2. Vertex elements.In the case of linear vertex elements the electric and magnetic
fields are treated identically, and the degrees of freedom for each field are the Cartesian
components at each vertex of the mesh. The basis functions for each field are identical;
there is one for each field component at a given vertex so that those at thekth vertex can be
denoted by

ψh,3k+α = φh,3k+α = ϕk(x)eα, α = 0, 1, 2, (1.7)

whereeα are the Cartesian unit vectors. Clearly in this caseNE = NB = 3Nv. The semi-
discrete vertex-element equations are then(

ε
∂Eh

∂t
, φh

)
− (∇ × Hh, φh) = 0, (1.8a)(

µ
∂Hh

∂t
, φh

)
+ (∇ × Eh, φh) = 0, (1.8b)

and are well defined for these elements, although integration by parts can be used to allow
weak imposition of boundary conditions (see Section 4).

We note here that vertex elements require storage of fewer degrees of freedom on a
tetrahedral mesh. However, they are currently limited to problems with no singularities
(e.g., from re-entrant corners), and although they can be applied to heterogeneous problems
they are not as well suited to these as are edge elements. On the other hand edge elements
give a partially discontinuous representation even when the solution is known to be smooth
(e.g., for wave propagation in free space).

2. DISPERSION RELATIONS ON TETRAHEDRAL MESHES

2.1. Regular Tetrahedral Meshes

An important method of characterising the properties of any numerical approximation to
the wave equation is to derive its discrete dispersion properties through a Fourier analysis.
In this section we do this for semi-discrete schemes (1.6) and (1.8) on regular tetrahedral
meshes and make comparisons (where possible) with the Yee finite-difference scheme as a
benchmark.

A translation-invariant grid ofR3 is required for the analysis; consider a reference “unit
cell” Ä̂ of unit volume. This unit cell is a polyhedron meshed by tetrahedra, and we suppose
that there are three independent vectorsv1, v2, andv3 such that ifÄ̂ is translated by integer
multiples of the three vectors, then we generate a finite-element mesh ofR3. This mesh is
then scaled by an overall scale factorh (this is equivalent to meshingR3 using translates of
the scaled unit cellÄh = hÄ̂).

The continuous problem (1.1) has a plane-wave solution proportional to exp(i (k · x−
ωt)), where for convenience we have set light speed 1/(µε)1/2 to unity, provided either of
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FIG. 1. Two types of unit cells used in the dispersion analysis. (a) Cubic unit cell subdivided into six tetrahedra;
(b) Sommerville unit cell divided into six congruent tetrahedra.

the dispersion relationsω = 0 orω = ±|k| is satisfied. Discrete plane-wave solutions of
(1.6) and (1.8) are then sought, of the form

Eh(x, t) = Êh(x)exp(−iωht) and Hh(x, t) = Ĥh(x)exp(−iωht),

whereÊh andĤh have the translation property that for everyx ∈ R3

Êh(x+ lhv1+mhv2+ nhv3) = Êh(x) exp(i k · (lhv1+mhv2+ nhv3))

Ĥh(x+ lhv1+mhv2+ nhv3) = Ĥh(x) exp(i k · (lhv1+mhv2+ nhv3))

for integersl, m, andn. For these functions to satisfy the finite-element equations, the
vectork and the frequencyωh have to be related by a dispersion relationωh = ωh(k, h).
Since the shape of the tetrahedra influences the accuracy of this relation, we shall consider
two different meshes, one based on right tetrahedra and another based on Sommerville
tetrahedra, as shown in Fig. 1. The unit cell in the Sommerville case is a polyhedron
consisting of six Sommerville tetrahedra [40]; all the tetrahedra are congruent, and the face
of each tetrahedron is an isosceles triangle. The unit cell vertices are

a1 = [0, 0, 0]T a5 = [0, 0,1z]T

a2 = [21x, 0,1z]T a6 = [21x, 0, 41z]T

a3 = [31x,1y, 31z]T a7 = [31x,1y, 51z]T

a4 = [1x,1y, 21z]T a8 = [1x,1y, 61z]T ,

where1x = 1
625/6
√

3, 1y = 1
225/6, and1z= 1

6
3
√

2
√

3. The scaling of the vertices was
chosen to give the unit cell a unit volume so that the mesh densities of the Sommerville-
tetrahedral mesh and the right-tetrahedral mesh are the same.
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2.2. Dispersion Accuracy for the Yee Scheme

The standard Yee finite-difference scheme for the Maxwell system [48] can be used as
a benchmark for a tetrahedral mesh based on cubes. This scheme must be applied on a
rectilinear grid, on which it is known to be second-order accurate [34], and to have the
semi-discrete dispersion relation(

ωYee
h h
)2= 2

√
sin(ξ1/2)2+ sin(ξ2/2)2+ sin(ξ3/2)2, (2.1)

whereξ = kh andh is the length of the edges of the cubes in the spatial grid. The fully dis-
crete scheme uses staggered leapfrog time stepping and has the discrete dispersion relation

ωYee
h,1t h =

2

λ
sin−1

(
λ

2
ωYee

h h

)
,

where the time step is1t and the Courant number isλ = 1t/h. It is apparent that the
stability condition for this method isλ ≤ 1/

√
3 and, by analyzing the Taylor series for

ωYee
h,1t in h and1t , one can show that the optimal choice isλ = 1/

√
3.

2.3. Dispersion Accuracy on Cubic and Sommerville Meshes

The general approach taken is a straightforward, albeit tedious, extension of that described
in two dimensions in [29] and only the overall results of the analysis are stated here.

• For the semi-discrete edge scheme (1.6), assembling the equations for each degree of
freedom for the unit cell and applying the translation property (2.1) leads to seven non-
trivial discrete dispersion relations. Only one of these is the “physical” dispersion relation,
converging toω2 = |k|2 ash or equivalently|ξ | is decreased. The other values forω2

h are
termed “parasitic” and are proportional toh−2, thus having an infinite phase velocity in the
limit as h tends to zero. They are similar to Bloch modes and do not seem to cause any
problems in practice, but must be taken into account when the stability of the fully discrete
scheme is analysed on an infinite domain.
• For the case of the semi-discrete vertex scheme (1.8), there are only three nontrivial

discrete dispersion relations, as in the exact case, and hence no parasitic modes. It can be
shown (using MAPLE) that on some grids (but not those used here) the node-based scheme
(1.8) has the dispersion relationsωh = 0 orωh = ±|k| + O(h4).

It is not possible in general to produce analytic dispersion relations for these discrete sets
of equations; however, they can be computed and plotted. We display the fractional error
in the phase velocity, defined as

ev(ξ) =
(
ωh(ξ)h

|ξ | − 1

)
, (2.2)

where the exact phase velocity is unity.
Figures 2a to 2e show a comparison of the phase-velocity error in the Yee, edge, and

vertex schemes as a function of the number of elements per wavelength along selected
directions. The rate of convergence of the discrete dispersion relations for the Yee and edge
schemes is roughlyO((kh)2). The vertex scheme, shown in Figs. 2c and 2e, has a visibly
different curvature, and both curves are consistent with anO((kh)4) convergence rate. The
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FIG. 2. Fractional phase-velocity error vs|ξ | = |kh| for the cuboid and Sommerville meshes. The phase
errors have been plotted along each of the three coordinate axes and along a “central” directionθ = φ = 0.5. The
propagation anglesθ andφ are defined byk1= |k | cos(θ )cos(φ), k2= |k | sin(θ ), k3= |k | cos(θ ) sin(φ). Note
that 10 elements per wavelength corresponds to|ξ | = 2π/10≈ 0.6. (a) Yee scheme with cubic mesh; (b) edge
elements with cubic mesh; (c) vertex scheme with cubic mesh; (d) edge elements with sommerville mesh; (e)
vertex elements with sommerville mesh.

vertex results on the Sommerville meshes are better than those on the cuboid mesh by almost
a factor of 4. Since the error is always negative, it may be possible to compensate for it to
some degree by choosing a suitable time-stepping method. In the case of the edge-element
scheme, shown in Figs. 2b and 2d, we see that the phase-velocity error has also been greatly
improved by the Sommerville mesh. The overall error for a given value of|kh| has been
decreased by roughly a factor of 4. Nevertheless, the sign of the error still depends on the
direction of propagation and is stillO((kh)2). This change in sign makes it impossible to
compensate for this error by using a suitable time stepping scheme (as is done in the case
of the Yee scheme).
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Figure 3 shows a comparison of contour maps of the phase-velocity errors for the three
schemes, whereev(ξ) has been plotted as a function of propagation angle. The maps identify
the anisotropic character of the edge scheme, where the sign of the phase velocity error
can be positive or negative depending on the direction of propagation. Inspection of the
maximum phase-velocity errors in Fig. 3 shows that the vertex scheme is easily the most
accurate on a given grid.

Figure 4 shows the directional characteristics of the phase-velocity error by plotting the
isosurfaces|ev| = 1× 10−3 as a function ofkh ∈ [−1, 1]3. The phase error for the edge
scheme is highly anisotropic compared to that for the vertex scheme, and the phase error
for the vertex scheme is much more isotropic on the Sommerville grid than on the cuboid
grid.

Although the phase errors for these three schemes seem reasonably comparable, it should
be noted that on a given cuboid mesh there are over twice as many unknowns in the edge
scheme as there are in the Yee or node-based schemes. This can be seen from a direct
calculation of the number of edges and vertices. On aN × N × N grid of cubes, each
decomposed into six tetrahedra, there are 3N3+ N2 unknowns for the Yee or node-based
scheme, while there are 7N3+ O(N2) degrees of freedom for the edge scheme. This means
that for a given density of degrees of freedom (rather than tetrahedra), the edge scheme will
have a much poorer phase error than the Yee scheme.

3. NUMERICAL WAVE PROPAGATION ON TETRAHEDRAL MESHES

The dispersion analysis just described is limited to regular meshes; since practical ex-
amples (e.g., the scattering example in the next section) are always non-uniform, we have
carried out a number of numerical comparisons to obtain greater insight on the relative
merits of the methods, using both regular meshes and partially randomized meshes. These
numerical comparisons are solely concerned with the propagation accuracy; their cumula-
tive accuracy on scattering calculations will be described in Section 4. Before presenting
the numerical results the time discretisation of the semidiscrete schemes (1.6) and (1.8)
needs some discussion.

3.1. Time Discretization

3.1.1. Edge elements.The spatially staggered nature of the degrees of freedom has led
to the use of a staggered-leapfrog time discretisation with this method; applying this to the
semi-discrete equations (1.6) leads to

(
ε
(
En+1

h −En
h

)
, ψh

)−1t
(
Hn+(1/2)

h ,∇ ×ψh
) =−〈Hn+(1/2)

h × ν, ψh
〉
, (3.1a)(

µ
(
Hn+(1/2)

h − Hn−(1/2)
h

)
, φh
)+1t

(∇ × En
h, φh

) = 0. (3.1b)

The resulting algebraic system can be solved by a diagonally preconditioned conjugate
gradient method (see, e.g., [24]). See the Appendix for details on the convergence rates for
CG and the choice of stable time step for both the edge and vertex methods.

3.1.2. The time-discrete vertex equations.The obvious choice of time discretisation for
the vertex method is the Taylor–Galerkin method of Donea [15]; this is based on a Taylor
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FIG. 3. Directional maps of the fractional phase-velocity errors at 10 elements per wavelength.The axes are
the propagation anglesθ andφ so that, e.g.,θ = φ = 0 corresponds to waves travelling along thex1 axis. The
hatched areas show where the error is positive; maxima (H) and minima (L) are shown where they occur. (a) Yee
scheme with cubic mesh; (b) edge elements with cubic mesh; (c) vertex scheme with cubic mesh; (d) edge scheme
with Sommerville mesh; (e) Vertex scheme with sommerville mesh.
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FIG. 4. Isosurfaces of the fractional error in the phase velocity. The isosurface chosen is forev = 1× 10−3,
and we show the region [−1, 1]× [−1, 1]× [−1, 1] in kh space. The Sommerville mesh gives a more symmetric
error in both cases. (a) Edge elements on the cuboid mesh; (b) edge elements on the Sommerville mesh; (c) vertex
elements on the cuboid mesh; (d) vertex elements on the Sommerville mesh.

series expansion on the analytic fields at timetn+1= tn + 1t , namely,

E(tn+1) ≈ E(tn)+1t

(
∂E
∂t

)
tn

+ 1

2
(1t)2

(
∂2E
∂t2

)
tn

+ O(1t3),

where from Maxwell’s equations (for constantµ, ε) we have that

∂2E
∂t2
= −(1/µε)∇ × ∇ × E = (1/µε)∇2E,
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using the fact that∇ · E = 0. Since the approximate fields do not have zero divergence, the
first expression is used to derive the second-order accurate time-derivative expression,

(
En+1

h − En
h

)
/1t + 1

2
(1t/µε)∇ × ∇ × En

h ≈
(
∂Eh

∂t

)
tn

+ O(1t2) (3.2)

(
Hn+1

h − Hn
h

)
/1t + 1

2
(1t/µε)∇ × ∇ × Hn

h ≈
(
∂Hh

∂t

)
tn

+ O(1t2). (3.3)

Substituting these time-derivative approximations into the semidiscrete equations (1.8), we
obtain (

ε

(
En+1

h − En
h

)
1t

, ϕh

)
− (∇ × Hn

h, ϕh
) = −1

2
1t
(
µ−1∇ × En

h,∇ × ϕh
)

(3.4a)

(
µ

(
Hn+1

h − Hn
h

)
1t

, ϕh

)
+ (∇ × En

h, ϕh
) = −1

2
1t
(
ε−1∇ × Hn

h,∇ × ϕh
)
, (3.4b)

where theO(1t2) surface integrals resulting from the integration by parts of thecurl-
squared termshave been discarded.

3.2. Numerical Results for Wave Propagation

The numerical experiments described below are for plane-wave propagation through a
cube-shaped region, which has been meshed by tetrahedra; two cases are considered:

(i) uniform right tetrahedra obtained as in Fig. 1a, from a starting mesh ofN × N × N
cubic cells;

(ii) a partially randomised version of (i) obtained by randomly displacing the coordinates
of each mesh point by a distance at most 0.08(2/N) in thex, y,andz directions.

A comparison is made between the edge-element combinations (1.4) and (1.5), the vertex
element (1.7), and (on the uniform mesh) the Yee scheme on the underlying cubic lattice. The
previous section showed right tetrahedra to give much poorer performance than Sommerville
tetrahedra; consequently the comparison gives the Yee scheme a considerable advantage.
The random mesh is also a demanding choice for the finite-element methods since an
automatic mesh generator would generate smoothly varying tetrahedra. For the Yee scheme
the time step is chosen to be the optimal step (the maximum step consistent with stability).
The time step1t for the vertex method is chosen to be 1/8 the length of the shortest edge
in the mesh (this is by no means maximal), and for the edge scheme the time step is the one
computed using the local analysis outlined in the Appendix (but decreased, if necessary, so
thatt = 3 is an integer multiple of the time step).

The test problem is the propagation of a smooth Gaussian wave given by

E = E0g(k · x− t) and H = H0g(k · x− t),

whereg(t) = exp(−10(s− 1)2) for 0≤ t ≤ 2 and is zero otherwise, andk = (cos(θ)
cos(φ), sin(θ), cos(θ) sin(φ)), whereθ = φ = 0.5 (the Yee scheme had exact propagation
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in the co-ordinate directions). The polarisation of the wave is

E0 = (−sin(θ) cos(φ), cos(θ), −sin(θ) sin(φ))

H0 = (−sin(φ), 0, cos(φ)),

and for this simple wave-propagation problem the boundary data are given by the exact
solution.

To obtain a quantitative comparison of the error in the various schemes, we shall display
plots of the discrete relativeL2 error as a function of the number of degrees of freedom
in the problem (number of unknowns). The following discreteL2 error can be defined for
each scheme, (∥∥π E

h E(t)− Eh(t)
∥∥2+ ∥∥π H

h H(t)− Hh(t)
∥∥2)1/2(∥∥π E

h E(t)
∥∥2+ ∥∥π H

h H(t)
∥∥2)1/2 , (3.5)

whereπ E
h andπ H

h are the appropriate projection operators for the electric and magnetic field
spaces for a given scheme. The error is evaluated when the wave has traversed approximately
85% of the cube diagonal. The discrete maximum error for each method is also computed.
This can be formulated in the same way as (3.5); however, since the basis functions are
linear, this discrete maximum norm is the same as evaluating the relative maximum error at
the degrees of freedom. Comparing the numerical solution with the appropriate projection
of the true solution is necessary to obtain a proper assessment of the edge-element scheme
as the solution is much more accurate at the locations of the degrees of freedom than
elsewhere, as is clearly visible in Fig. 5. A conventionalL2 error would simply show the
O(h) interpolation accuracy of the basis functions.

The uniform mesh results are shown in Fig. 6a and 6b, where the error is plotted against
the number of degrees of freedom of each method rather than the mesh size. The initial slope
of the lines in Fig. 6a is consistent with an error proportional toO(h2) for all methods, but
on finer grids the convergence rate is more consistent withO(h3/2) for the edge and vertex
methods. In this case the Yee scheme is the most accurate and the edge scheme the least
accurate method, despite the superconvergence effects at the degree-of-freedom locations.
This superior performance of the Yee scheme is to be expected on uniform meshes but

FIG. 5. Basis function representation of three components of the edge-element electric field att = 2.5 and
N = 16 on the uniform cuboid-based mesh; (a) shows the finite-element function along the linex = y = 1 and
(b) shows an improved reconstruction by linear interpolation of edge midpoint values.
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FIG. 6. DiscreteL2 error on uniform (a) and randomized (c) meshes, and the discrete maximum norm error on
uniform (b) and randomized (d) meshes, plotted against the total number of degrees of freedom. Results are shown
for the edge and vertex schemes, together with sight lines corresponding toO(h) andO(h2) rates of convergence.

serves to confirm that finite element methods are only justified when geometric flexibility
is required. Fig. 6b shows that in the maximum norm all the methods are approximately
second order; however, overall, the Yee scheme is still the most accurate. Interestingly, the
magnetic field computed by the edge or vertex schemes is substantially less accurate than
the corresponding electric field. It appears that the error in the magnetic field accounts for
the slight slowing of convergence evident in Fig. 6a.

The discrete least-squares errors for the edge and vertex schemes on the randomised mesh
are shown in Fig. 6c. The vertex and edge schemes are converging atO(h2) on the coarse
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grids but the rate of convergence may be slowing down on the finer grids. Nevertheless, the
edge scheme is still converging faster thanO(h), so super-convergence of the method at the
degrees of freedom seems to be insensitive to the grid perturbation we have used. The error
in the edge scheme is roughly 4.5 times the error in the vertex scheme for a given number
of degrees of freedom.

The discrete maximum norm error plots for the randomised mesh are shown in Fig. 6d
and show that in this norm both methods are converging atO(h) (compared toO(h2) on
the uniform mesh). This is not necessarily inconsistent with the least-squares error results
in Fig. 6c, since it is possible that there is considerable error (maybe associated with “poor”
tetrahedra) but that this error is confined to small volumes in the mesh. As in the case
of the uniform grid, the electric field is approximated better than the magnetic intensity
(particularly for the edge scheme where the electric field is almost converging to second
order).

4. SCATTERING FROM A SPHERE USING TETRAHEDRAL MESHES

This section describes the calculation of the broadband radar cross section of a perfectly
conducting sphere using both vertex and edge elements. This is a more realistic setting in
which to compare methods, although reference to the exact Mie solution is complicated by
the use of approximate absorbing boundary conditions and polygonal approximations to the
spherical surface. The comparisons are necessarily qualitative but show that accurate results
can be obtained and that the accuracy is significantly affected by the choice of excitation
boundary condition and by the method used for recovering the far fields. The vertex method
is successful for this problem because the scatterer is smooth and convex.

LetÄ be a sufficiently smooth region withÄ = Ä1 ∪Ä2 as shown in Fig. 7. A scattered-
field formulation was adopted for this exterior scattering problem. Since Maxwell’s

FIG. 7. The scatterer (with boundary∂Äs) occupies the shaded region.
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equations (1.1) apply directly to the scattered fields, we simply need to provide bound-
ary conditions on the surface of the scatterer∂Äs and on the artificial truncation boundary
∂Ä∞. The conditions used are

E× ν = −Einc× ν ∀ x ∈ ∂Äs, (4.1a)

H × ν =
√
ε/µET ∀ x ∈ ∂Ä∞, (4.1b)

whereE andH now refer to the scattered electric and magnetic fields,Einc is the known
incident electric field,ET = ν × (E× ν) is the tangential electric field, andν is the unit
outward normal. In addition, the initial scattered fieldsH(x, 0) andE(x, 0) must be given
(in our caseH(x, 0)= E(x, 0)= 0). The Silver–Muller condition (4.1b) on∂Ä∞ could also
have been imposed as

E× ν = −
√
µ/εHT , (4.2)

whereHT = ν × (H × ν) is the tangential magnetic field. Applying the Silver–Muller con-
ditions at a finite distance from the scatterer results in an approximate absorbing boundary
condition which is exact for outgoing spherical waves.

4.1. Absorbing Boundary Conditions

4.1.1. Edge elements.The excitation boundary condition (4.1a) can be imposed strongly
with edge-element basis functions (1.4), i.e.,

Eh × ν = −
(
π E

h Einc
)× ν ∀x∈ ∂Äh

s, (4.3)

in terms of a projection of the incident field. A space of test functions with zero components
along boundary edges can also be easily constructed:

ψ = ψh ∈ Uh
0 = {ψh |ψh × ν = 0, ∀x ∈ ∂Äs}.

Using these test functionsψh ∈ Uh
0 with the semi-discrete equations (1.6), and imposing the

absorbing boundary condition (4.1b) weakly (see [44] for a frequency domain formulation)
leads to time-discrete edge-element scattering equations similarly to (3.1),

ε

(
En+1

h −En
h

1t
, ψh

)
− (Hn+(1/2)

h ,∇ × ψh
) = −√ ε

4µ

〈
En

hT + En+1
hT , ψh

〉
∂Ä∞

(4.4a)

µ

(
Hn+(1/2)

h − Hn−(1/2)
h

1t
, φh

)
+ (∇ × En

h, φh
) = 0. (4.4b)

If thene edge degrees of freedom on∂Äs are numbered last, then the corresponding algebraic
system can be written as

Mε(En+1− En)+ 1

2
1t M ′ε(En+1+ En) = 1tCHn+(1/2) (4.5a)

Mµ

(
Hn+(1/2) −Hn−(1/2)) = −1tCT Ēn, (4.5b)
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where

• the vectors of electric and magnetic degrees of freedom areE = (E1, . . . , ENe−ne)
T ,

andHn+(1/2) = (Hn+(1/2)
1 , . . . , Hn+(1/2)

N f
)T , Ē = (E1, . . . , ENe)

T ,

• Mε,M ′ε ∈ RNe−ne×Ne−ne are the edge mass matrix and the outer surface mass matrix,
respectively,
• Mµ ∈ RNf×Nf is the (diagonalisable) magnetic field mass matrix,
• C ∈ RNe×Nf is the curl matrix.

The surface mass matrixM ′ε can be assembled and combined with the standard mass
matrix Mε and the resulting system can be solved (see the Appendix) at each time step by
a diagonally preconditioned conjugate gradient method [24]). An efficient parallel imple-
mentation is described in [30].

4.1.2. Vertex elements.For vertex elements, tangential boundary conditions of the form
(4.3) are awkward to impose strongly because of the Cartesian form of the basis functions
(1.7).

We applied integration by parts to thecurl term in (1.8a) to allow both boundary conditions
(4.1a) and (4.1b) to be imposed weakly in a manner similar to the Silver–Muller condition in
(4.4a) and applied the same procedure to theH equations utilising (4.2). The time-discrete
vertex-element equations for the scattering problem are then (following (3.4))(

ε

(
En+1

h − En
h

)
1t

, ϕh

)
− (Hn

h,∇ × ϕh
) = −〈Hn

h × ν, ϕh
〉
∂Äs
− 〈√ε/µEn

hT, ϕh
〉
∂Ä∞

− 1

2
1t
(
µ−1∇ × En

h,∇ × ϕh
)
, (4.6a)(

µ

(
Hn+1

h − Hn
h

)
1t

, ϕh

)
+ (Eh,∇ × ϕh) = −

〈
Einc × ν, ϕh

〉
∂Äs
− 〈√µ/εHn

hT, ϕh
〉
∂Ä∞

− 1

2
1t
(
ε−1∇ × Hn

h,∇ × ϕh
)
. (4.6b)

Denoting the vectors of electric and magnetic degrees of freedom for this case asE,H ∈
R3Nv , this can be written as the following matrix problems for each time step1t , where
Mε,Mµ,C, Dε, Dµ ∈ R3Nv×3Nv are the electric and magnetic field mass matrices, the curl
matrix, and the curl-squared matrices, respectively; note that the mass matrices are block
diagonal, with blocks corresponding to each of the three Cartesian components. The matrix
problems are

Mε(En+1− En) = 1t

[
CHn − Gn

E +
1

2
1t DµEn

]
, (4.7a)

Mµ(Hn+1−Hn) = 1t

[
CEn − Gn

H +
1

2
1t DεHn

]
, (4.7b)

whereGE andGH are collected surface-integral terms. These terms have been left explicit
(unlike the edge case (4.5)) to avoid coupling together the surface Cartesian field compo-
nents.

An interesting question arises with regard to the common practice of lumping the mass
matricesMε and Mµ. The following approximation to the third-order term in the Taylor
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series could be implemented (K. Morton, private communication, 1994), without adding
additional complexity to the method,

Et t t ≈ −(1/µε)∇2(En+1− En)/1t (4.8)

(the Laplacian operator would be preferred in this case since it leads to a block diagonal
peturbation), so that (4.7) becomes(

Mε + 1

6
1t2Lµ

)
(En+1− En) = 1t

[
CHn − Gn

E +
1

2
1t DµEn

]
, (4.9a)(

Mµ + 1

6
1t2Lε

)
(Bn+1− Bn) = 1t

[
CEn − Gn

H +
1

2
1t DεHn

]
, (4.9b)

whereLµ andLε are scaled Laplacian matrices. The peturbations clearly have a diagonal-
ising effect on the mass matrices, and on certain regular meshes the off-diagonal terms are
all negative, so there will be a choice of1t which diagonalises all the mass matrices. Mass
lumping could therefore be argued to produce an increase in the accuracy, as well as the
stability, of the time discretisation. Consequently, although we have retained a consistent
mass matrix in our calculations, it may be that the vertex results can be improved by mass
lumping.

The excitation boundary condition (4.1a) can be imposed strongly in the vertex element
method [33] despite the requirement to assign values to tangential field components. The
first step is to define vertex normals and this can be done by averaging boundary-facet
normals to their common vertices. A time-discrete form of Eqs. (4.6) is then solved for
the field components at every vertex on the mesh. The fields at each boundary vertex are
then locally resolved into normal and tangential components and the tangential components
altered to match the required values. Recombining these tangential components with the
unaltered normal component recovers the Cartesian component fields for the next time step.
This approach has the disadvantage of introducing errors at sharp corners. The figures in
Section 4.4 show a comparison of the two approaches to enforcement of these boundary
conditions.

4.2. The Radar Cross Section

The quantity of interest is the radar cross section, a measure of the reflectivity of the
scatterer. For a perfectly conducting object under plane-wave illumination, the RCS at a
given frequencyω is defined as

RCS(ω) = lim
r→+∞4πr 2

∣∣Eωscat(r)
∣∣2∣∣Eωinc

∣∣2 , (4.10)

wherer is the distance from the observer to the scatterer,Eωscat is the scattered electric
field amplitude at the observer, andEωinc is the incident field amplitude at the scatterer. In
general, the RCS will depend on the direction of the incident wave relative to the scatterer,
though obviously not in the case of a sphere. It will also depend on the angle between the
observer and the incident wave; the results in this section are for themonostaticRCS in
which the observer direction is the same as the incident direction, i.e., reflection back in the
line of sight. Because of the linearity of the problem, a time-domain method gives access
(via a discrete Fourier transform of the time-varying fields) to the periodic amplitudesEω
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andHω over the range of frequencies that are excited (see [41] for a description of this
technique combined with the Yee scheme). This has the advantage of allowing the RCS to
be calculated over a range of frequencies in a single simulation. The pulse excitation that
was used gave adequate excitation up to the highest frequencies resolvable on the available
meshes.

The scattered field at infinity is recovered from the computed fields on a convex collection
surface∂Äc ∈ Äh surrounding∂Äs, using the standard asymptotic approximation [13] (see
Fig. 7 for orientation details).

Eω(r) = eik |r |
|r |

{
E∞(r̂)+ O

(
1

|r |
)}

|r | → ∞, (4.11)

where the far-field patternsE∞, defined on the unit sphere, are given in terms of the computed
fields on∂Äc by

E∞(r̂) = ik

4π
r̂ ×

∫
∂Äc

{ν(r ′)× Eω(r ′)+ [ν(r ′)× Hω(r ′)] × r̂}e−ik r̂ .r ′ dS(r ′). (4.12)

It is not obvious how best to approximate the integrals in (4.12), and in general the results
will depend both on the interpolation method adopted and on the choice of collection
surface. The use of the scatterer itself is an obvious choice; however, it requires a one-sided
interpolation for the tangential magnetic field contributions in the case of edge elements.
An example of the use of the Yee scheme can be found in [42]; the use of a stair-stepped
approximation to the sphere gives rather poor results, as would be expected.

4.3. Flux Recovery

Of the two surface integral contributions in (4.12), it is the latter which creates the
most obvious difficulties for the edge-element method since the tangential magnetic field
components are not well defined on any surface composed of faces of tetrahedra. They
can be estimated by interpolation, but it would be preferable to have a robust and accurate
method for recovering these quantities. The general form of the surface integral or functional
required is ∫

∂Äc

ν × Hω · gd A, (4.13)

and an alternative to its direct calculation is to derive an equivalent expression from the
global solution.

Letv be a vector field which has zero tangential components on∂Äs, is suitably smooth in
bothÄ1 andÄ2 but discontinuous across the collection surface with a jump, in its tangential
components equal tog, and has a smooth tangential vector field on∂Äc; i.e.,

ν × v = 0 on∂Äs,

[vT ] = g on ∂Äc.

The electromagnetic field amplitudesEω andHω (takingE(x, t) = R{Eω(x)ei (ωt+α)}) sati-
sfy the frequency domain Maxwell equations; these can be written in weak form as

iω(εEω, ψ)− (Hω,∇ × ψ) = 〈ν × Hω, ψ〉, (4.14a)

iω(µHω, φ)+ (∇ × Eω, φ) = 0. (4.14b)
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We can chooseψ = v in (4.14a) by restricting the domain to eitherÄ1 orÄ2; thus

iω(εEω, v)Ä1 − (Hω,∇ × v)Ä1 = 〈ν1× Hω, v〉∂Äc, (4.15a)

iω(εEω, v)Ä2 − (Hω,∇ × v)Ä2 = 〈ν2× Hω, v〉∂Äc −
〈√

ε/µEωT , v
〉
∂Ä∞

, (4.15b)

and adding these two equations gives the desired functional∫
∂Äc

(ν1× Hω) · gd A=
∫
∂Äc

(ν1× Hω) · [vT ] d A

= iω(Eω, v)− (Hω,∇ × v)+ 〈√ε/µEωT , v
〉
∂Ä∞

= aE(Eω,Hω; v). (4.16)

The far field (4.12) can be written as a functional by taking its dot product with any unit
tangent vectoreon the unit sphere; i.e.,

e · E∞(r̂) = ik

4π

{∫
∂Äc

(ν(r ′)× Eω(r ′)) · (e× r̂) e−ik r̂ .r ′ d A(r ′)

+
∫
∂Äc

(ν(r ′)× Hω(r ′)) · ((r̂ × e)× r̂) e−ik r̂ .r ′ d A(r ′)
}
. (4.17)

Then direct comparison between (4.16) and (4.17) shows that by taking

[vT ] = g= ((r̂ × e)× r̂)e−ik r̂ ·r ′ (4.18)

the functional can be rewritten so that the surface integral terms depending on the tangential
magnetic field components on∂Äc are replaced by volume integral terms depending on the
global solution, as required:

e · E∞(r̂) = ik

4π

{∫
∂Äc

(e× r̂) · (ν(r ′)× Eω(r ′))e−ik r̂ ·r ′d A+ aE(Eω,Hω; v)
}
. (4.19)

The choice of three independent unit vectorse1, e2, e3 then allows a complete determination
of E∞(r̂) for any givenr̂ . Note that this definition is independent of the continuation ofv
into Ä1 andÄ2. To see this, supposev1 andv2 are two choices ofv satisfying the above
jump conditions; thenv1− v2 is a continuous function on the whole ofÄ and can be used
as a test function in (4.14a); i.e.,aE(Eω,Hω; v1− v2) = 0. Consequently we are free to
choose the continuation ofv in such a way as to minimise the extra computation created by
replacing a surface integral by a volume integral. To see how to do this, assume thatEωh and
Hω

h are the edge finite-element approximate solutions to the frequency domain Maxwell’s
equations; then by an analogous procedure to the exact case we have that

e · Eh,∞= ik

4π

{∫
∂Äc

(e× r̂) · (ν(r ′)× Eωh (r
′)
)
e−ik r̂ ·r ′d A(r ′)+aE

(
Eωh ,H

ω
h ; vh

)}
, (4.20)

wherevh is an edge finite-element function (1.4) (i.e., with tangential degrees of freedom)
onÄ1 orÄ1, but discontinuous across∂Äc such that

ν × vh = 0 on∂Äs,

[vh,T ] = gh on ∂Äc,
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where

gh ≈ (r̂ × e)× r̂e−ik r̂ ·r ′ . (4.21)

In fact we takegh to be the interpolant of(r̂ × e)× r̂e−ik r̂ ·r ′ on∂Äc . A useful choice for a
practical implementation of the extraction procedure is

vh = 0 onÄ1,

vh = 0 at all interpolation points inÄ2,

and [vh,T ] is as discussed above. In this case

aE
(
Eωh ,H

ω
h ; vh

) = ∑
K∈Ä1

∂K∩∂Äc 6=∅

∫
K

(
iω
(
Eωh · vh

)− Hω
h · ∇ × vh

)
dV. (4.22)

Thus the volume integral need only be performed over a thin “skin” of widthO(h) outside
∂Äc. This looks rather “one sided”, but is merely a convenient choice ofvh.

These expressions require slight modification (anO(1t)2 peturbation) in our case since
Eωh andHω

h are obtained from time-domain values using a discrete Fourier transform. Con-
sequently (4.22) is replaced by

ãE
(
Eωh ,H

ω
h ; vh

)= ∑
K∈Ä1

∂K∩∂Äc 6=∅

∫
K

(
eiω1t/2− e−iω1t/2

1t

(
Eωh · vh

)− Hω
h · ∇ × vh

)
dV. (4.23)

This type of reformulation has been used in many other finite-element contexts in which
a flux surface integral is required and can be shown to improve the asymptotic order of
accuracy of the far field. The error analysis is outlined in Appendix 2, and despite the first-
order accurate nature of the terms in (4.20) the far field can be shown to be second-order.

4.4. Results

Time-domain scattering calculations for broadband illumination of a perfectly conducting
sphere were carried out using both the edge-element approximation (4.5) and the vertex-
element approximation (4.7). The RCS was calculated as a function of wavelength and
compared with the exact Mie series solution. For the vertex-element case the RCS was
calculated as a function of wavelength by direct approximation of the complete far-field
integral. The following two meshes of a conducting sphere of radius 0.25 containing domain
[−1, 1]× [−1, 1]× [−1, 1] were used:

• Sphere 1: Nk ≈ 70, 000, Ne ≈ 90, 000, Nv ≈ 13, 000
• Sphere 2: Nk ≈ 110, 000, Ne ≈ 230, 000,≈ Nv ≈ 19, 000.

It can be seen in Fig. 8 that the mesh Sphere 2 resolves the sphere significantly better than
Sphere 1 by using a more refined mesh closer to the surface.

Figure 9 shows a comparison of vertex element RCS calculations for both the strong and
the weak imposition of the boundary excitation (4.1a) for the finer mesh. The normalised
echo area (1/πa2) RCS (ω) is plotted against the sphere radius in wavelengths so that reflec-
tivity is plotted against frequency. The complete curve was obtained from a single scattering
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FIG. 8. Tetrahedral mesh sections indicating the geometry resolution of the meshes used in the scattering
calculations. (a) sphere 1 (Nv ≈ 13,000); (b) sphere 2 (Nv ≈ 19,000).

calculation by discrete Fourier transform of the time varying fields over the required range
of frequencies. In this case there are≈32 elements along the sphere circumference giving
approximately five elements per sphere radius. The far fields have been computed by di-
rect approximation of (4.12) evaluated on collection surface positioned roughly halfway

FIG. 9. Comparisons of the computed vertex element RCS for a sphere with the exact Mie series solution (solid
line), comparing the weak imposition (I) of the scattering boundary conditions (dashed line) against the strong
imposition (II) using averaged normals (dashed–dotted line). The lower solid line shows the energy distribution
of incident Gaussian pulse.
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between the sphere and the outer boundary. The variation of the backscatter coefficient with
frequency is accurate to better than a decibel up to an electrical size of 0.6λ, corresponding
to a resolution of 10 elements per wavelength. The results confirm that the weak imposition
is superior (and is also easier and more natural to implement) with the improvement most
significant at the high-frequency sampling of the time-varying fields. They also confirm the
effectiveness of the weakly imposed Silver–Muller conditions for this element (they are
imposed at a distance of around 1.5λ at the shortest wavelength sampled), despite its being
a first-order condition.

Figure 10 shows a comparison of edge-element RCS calculations for the collection
surface positioned either on the surface of the sphere itself or roughly halfway between
the sphere and the outer boundary. The RCS was calculated both by direct approximation of
the complete far-field integral (4.12), using one-sided estimation of

∫
∂Ärcs

(ν × Hω) · φ d A,
and by the new flux-recovery form (4.20). It can be seen that the use of a new far-field
recovery procedure has led to more accurate results for backscatter coefficients on these
meshes. This supports the assertion in Appendix B that this technique for the recovery

FIG. 10. Comparisons of the computed RCS using the edge-element method for the Sphere 1 and Sphere 2
meshes with the exact Mie series solution (solid line), using far fields calculated using the standard formulation
(dashed line - - -), and using the flux-recovery formulation (dash–dotted line -· -). (a) Sphere 1: off-surface RCS
collection surface; (b) Sphere 1: on-surface RCS collection surface; (c) Sphere 2: off-surface RCS collection
surface; (d) Sphere 2: on-surface RCS collection surface.
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of far fields from first-order edge-element solutions results in second-order accuracy. The
on-surface recovery procedure appears to be robust, avoids the need to define collection
surfaces, and provides the most accurate results.

The edge-element calculation provides accuracy comparable (with the new far-field re-
covery) to that of the vertex-element calculation on the same mesh. As noted earlier, the
edge-element method is the more expensive calculation because of the greater number of
degrees of freedom; however, the vertex method is still severely restricted in 3D to scatterers
with smooth surfaces and no reentrant corners.

5. CONCLUSIONS

A 3-D dispersion analysis of the edge-element finite-element method on tetrahedral
meshes has been carried out and compared with vertex elements. The analysis clearly
demonstrates that the mesh character has a significant influence on phase accuracy and
moreover that a “uniform” Sommerville mesh works better than right tetrahedra in both the
cases. The difference is particularly pronounced for edge elements. The analysis also shows
that the vertex scheme is fourth-order accurate in phase error, compared to second-order
for the edge scheme.

Comparative results for numerical wave propagation demonstrate the advantage of the
vertex elements, and implementation issues support this advantage. The loss of accuracy
observed with partially randomised meshes is significant; however, the overall rate of con-
vergence remains close to second order.

Results for scattering from a sphere show that, with weakly imposed boundary conditions,
the vertex method is still more accurate on the same mesh and should be cheaper to compute.
However, the advantage is not as pronounced as in simple wave propagation and use of a
new far-field recovery procedure leads to equivalent accuracy with the edge method. The
on-surface recovery procedure appears to be robust and avoids the need to define collection
surfaces. These results support arguments, based on the analysis in the Appendix, for second-
order accuracy for the edge-element recovered far fields.

APPENDIX A

Algebraic Properties

Although the discrete system of equations require the solution of an algebraic system
at every time step, they still have a time step stability limit; in fact, the algebraic systems
are well conditioned and are easily solved using a small number of diagonally precondi-
tioned conjugate gradient iterations. The following sections develop estimates of the con-
vergence rates for the CG iteration and of the time step restriction, based on the approach of
Wathen [43].

Edge Elements

For the case of edge elements, the magnetic field mass matrixM in (4.5) can be diago-
nalised and hence easily solved. The electric field mass matrixMε , however, is symmetric,
positive definite, and sparse (see [18] for an analysis of the sparsity pattern). LetM K

ε be the
mass matrix for elementK ∈ Äh, and letDK

ε be the diagonal matrix formed from the main
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diagonal ofM K
ε . Then the eigenvalues of the diagonally preconditioned matrixMε are real

and lie in [λl , λu], whereλl = minK∈Äh λ
min
K , λu = maxK∈Äh λ

max
K , and

λmin
K = min

x 6=0

xT M K
ε x

xT DK
ε x

and λmax
K = max

x 6=0

xT M K
ε x

xT DK
ε x
.

For the cuboid grid based on the unit cell shown in Fig. 1,λu/λl = 6.433, which implies that
at each step of the preconditioned conjugate gradient algorithm, the error is decreased by a
factor of approximately 0.43. For the Sommerville grid, the above analysis gives a condition
number estimate of 5 and hence a convergence factor of 0.38 per conjugate gradient step.

Next we turn to the problem of choosing a stable time step. Numerical computations
of ωh on the cuboid-based grid show that maxk ωhh ≈ 8.5 and hence the leap frog time-
stepping scheme has a stability constraint of1t/h ≤ 0.23, where1t is the time step and
h is the length of the sides of the cubic mesh which underlies the tetrahedralization. For a
nonuniform mesh, the stability bound is more difficult to compute, so we outline a method
for computing a quick approximation to the stability bound using the methods of Wathen.

Assuming zero boundary data and applied current, eliminating the magnetic field from
(4.5) gives

Mε(En+1− 2En + En+1)+ (1t)2CT M − µ−1CEn = 0.

From this it is clear that ifωmax
h is the largest eigenvalue of the generalized eigen problem

ω2
hMε
EV = CT M−1

µ C EV,

the method is stable provided (1t)ωmax
h ≤ 2. But since∇ ×U N

h ⊂ V N
h we know that

CT M−1
µ C is just the matrix corresponding to the bilinear forma(u, v)= (∇ ×u, µ−1∇ × v).

Hence ifSK is the elemental matrix corresponding to the bilinear form

aK (u, v) =
∫

K
∇ × u · µ−1∇ × v dV

and if M K
ε is the elemental mass matrix as before, then

ωmax
h ≤ max

K∈Äh

ωmax
K ,

whereωmax
K is the largest eigenvalue of the local eigenvalue problem

ω2
K M K

ε Ev = SK Ev.

Of course, such an estimate is likely to be rather poor if there are only a few very “poor”
tetrahedra in the mesh, but we have found that it performs quite well in practice.

Vertex Elements

In this case bothMε andMµ are symmetric, positive definite, and sparse, and the Wathen
bound on the condition number of the preconditioned matrixMε is 5, independent of the
mesh, giving a convergence factor of 0.38 per conjugate gradient step. This indicates that
conjugate-gradient method should converge faster for the node-based scheme than for the
edge-based scheme, although it requires two conjugate gradient solves per time step.
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APPENDIX B

Far-Field Errors

Note that

e · E∞ − e · E∞,h = ik

4π

{∫
∂Ärcs

(e× r̂ exp(−ik r̂ · r ′)) · (Eω − Eωh
)

d A

+ aE(Eω,Hω; v)− aE
(
Eωh ,H

ω
h ; vh

)}
.

We choosev = vh, and letzbe any sufficiently smooth function with a possible jump across
∂Ärcs. Then

aE(Eω,Hω; v)− ae
(
Eωh ,H

ω
h ; vh

) = aE
(
Eω − Eωh ,H

ω − Hω
h ; vh − z

)
+aE

(
Eω − Eωh ,H

ω − Hω
h ; z
)
.

We want to choosez so that the pair(z,w) satisfies the transmission problem

−ikw−∇ × z = 0 inÄ1 andÄ2,

−ikz+∇ × w = 0 inÄ1 andÄ2,

ν × w = 0 on∂Äs,

[wT ] = f on ∂Ärcs,

[zT ] = (r̂ × e)× r̂ exp(−ik r̂ · r ′) on ∂Ärcs,

ν × w− zT = 0 on∂Äinf,

wheref is as yet unspecified. For edge spaces, the magnetic equation is satisfied exactly so
that

Hω − Hω
h =

1

ik
∇ × (Eω − Eωh

)
.

It can then be shown, using the boundary conditions forw and the jump conditions forw
andz to simplify the boundary term, that

aE
(
Eω − Eωh ,H

ω − Hω
h ; z
) = ∫

∂Ärcs

ν × (Eω − Eωh
) · [wT ] d A.

Hence

e · E∞ − e · Eh,∞ = ik

4π

{
aE
(
Eω − Eωh ,H

ω − Hω
h ; vh − z

)+ ∫ e · r̂ × (ν × (Eω
−Eωh

))
exp(−ik r̂ · r ′)+ ν × (Eω − Eωh

) · f d A

}
.

We can now make the choice

f(r ′) = −(e× r̂)T exp(−ik r̂ · r ′)
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and obtain the estimate

e · E∞ − e · Eh,∞ = ik

4π
aE
(
Eω − Eωh ,H

ω − Hω
h ; vh − z

)
which indicates that, for first-order edge elements, the method will provide second-order
accuracy for the far fields. The use of the time-domain method will not change the estimates
by more thanO(1t2).
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